
BITS: BIOS Implementation Test Suite

Josh Triplett and Burt Triplett

September 7, 2011

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Overview

BIOS and “the platform”

Why do we want to test it?

History of BITS

Tour of existing functionality

Fun with scripting in a ring 0, pre-OS environment

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BIOS

Minimal support needed to boot an OS

Platform configuration

Interface to platform functionality

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BIOS

Minimal support needed to boot an OS

Platform configuration

Interface to platform functionality

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

The “Platform”

CPUs

Chipset

Memory

Minimal video

Minimal input

Non-standard stuff: lights, buttons, bells, whistles

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

The “Platform”

CPUs

Chipset

Memory

Minimal video

Minimal input

Non-standard stuff: lights, buttons, bells, whistles

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

The “Platform”

CPUs

Chipset

Memory

Minimal video

Minimal input

Non-standard stuff: lights, buttons, bells, whistles

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Platform configuration

Highly configurable hardware

Powers on in a minimal safe configuration

Programming CPU and chipset registers

Tuning for optimal configuration

Enabling technologies that require additional configuration

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Platform configuration

Highly configurable hardware

Powers on in a minimal safe configuration

Programming CPU and chipset registers

Tuning for optimal configuration

Enabling technologies that require additional configuration

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Platform configuration

Highly configurable hardware

Powers on in a minimal safe configuration

Programming CPU and chipset registers

Tuning for optimal configuration

Enabling technologies that require additional configuration

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Interface to platform functionality

16-bit interrupts

ACPI: Advanced Configuration and Platform Interface

Data structures describing standard components

Mostly, bytecode methods to interpret and execute

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Interface to platform functionality

16-bit interrupts

ACPI: Advanced Configuration and Platform Interface

Data structures describing standard components

Mostly, bytecode methods to interpret and execute

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Interface to platform functionality

16-bit interrupts

ACPI: Advanced Configuration and Platform Interface

Data structures describing standard components

Mostly, bytecode methods to interpret and execute

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Interface to platform functionality

16-bit interrupts

ACPI: Advanced Configuration and Platform Interface

Some data structures describing standard components

Mostly, bytecode methods to interpret and execute

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BIOS has gotten pretty complicated

Thousands of pages of specifications and recommendations

Various hardware, standard or system-specific

A few decades of compatibility requirements

A tiny, bare-metal programming environment

No huge community of developers looking at it

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What can go wrong?

Crashes (ASPM)

Broken CPU features (VT, NX, AES)

Sub-optimal power management (configuration, ACPI)

Delays and latency (SMI)

General-purpose misbehavior (USB, performance counters)

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What can go wrong?

Crashes (ASPM)

Broken CPU features (VT, NX, AES)

Sub-optimal power management (configuration, ACPI)

Delays and latency (SMI)

General-purpose misbehavior (USB, performance counters)

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What can go wrong?

Crashes (ASPM)

Broken CPU features (VT, NX, AES)

Sub-optimal power management (configuration, ACPI)

Delays and latency (SMI)

General-purpose misbehavior (USB, performance counters)

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What can go wrong?

Crashes (ASPM)

Broken CPU features (VT, NX, AES)

Sub-optimal power management (configuration, ACPI)

Delays and latency (SMI)

General-purpose misbehavior (USB, performance counters)

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What can go wrong?

Crashes (ASPM)

Broken CPU features (VT, NX, AES)

Sub-optimal power management (configuration, ACPI)

Delays and latency (SMI)

General-purpose misbehavior (USB, performance counters)

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Why might you want BITS?

You develop a BIOS, and you want a better test criteria than
“Windows boots, ship it”

You hack OS or application code that relies on platform
technologies

You do bug triage, and want a bug reporter to check if the
problem lies in their BIOS

You want to play with hardware in a low-level way, but in a
comfortable environment

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

“That’s why we wrote BITS”

That’s the problem we wanted to solve

That’s what BITS evolved into

That’s not where we started

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

“That’s why we wrote BITS”

That’s the problem we wanted to solve

That’s what BITS evolved into

That’s not where we started

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Testing reference code

Initializes CPU power management registers

Writes ACPI tables

Supports frequency scaling, idling, and throttling

Designed to run in a BIOS

SMP, takes over CPUs

How do you test it, without a custom BIOS?

DOS test harness

32-bit DOS extender

Load and run the reference code

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Testing reference code

Initializes CPU power management registers

Writes ACPI tables

Supports frequency scaling, idling, and throttling

Designed to run in a BIOS

SMP, takes over CPUs

How do you test it, without a custom BIOS?

DOS test harness

32-bit DOS extender

Load and run the reference code

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Testing reference code

Initializes CPU power management registers

Writes ACPI tables

Supports frequency scaling, idling, and throttling

Designed to run in a BIOS

SMP, takes over CPUs

How do you test it, without a custom BIOS?

DOS test harness

32-bit DOS extender

Load and run the reference code

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Booting an OS afterwards

Rewrite the ACPI tables correctly

See how the OS reacts

Measure power consumption

BIOS interrupt 19H: load and boot an OS

Read the MBR and jump to it

Ends up back in the bootloader

No OS ever does this

Guess how consistently it works?

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Booting an OS afterwards

Rewrite the ACPI tables correctly

See how the OS reacts

Measure power consumption

BIOS interrupt 19H: load and boot an OS

Read the MBR and jump to it

Ends up back in the bootloader

No OS ever does this

Guess how consistently it works?

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Booting an OS afterwards

Rewrite the ACPI tables correctly

See how the OS reacts

Measure power consumption

BIOS interrupt 19H: load and boot an OS

Read the MBR and jump to it

Ends up back in the bootloader

No OS ever does this

Guess how consistently it works?

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

GNU GRUB2

32-bit flat address space

C, malloc, printf

File input

Command line, argument parsing

Menu system

DOS-like single thread of control

No OS to disturb

. . . and it’s a bootloader

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

GNU GRUB2

32-bit flat address space

C, malloc, printf

File input

Command line, argument parsing

Menu system

DOS-like single thread of control

No OS to disturb

. . . and it’s a bootloader

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

GNU GRUB2

32-bit flat address space

C, malloc, printf

File input

Command line, argument parsing

Menu system

DOS-like single thread of control

No OS to disturb

. . . and it’s a bootloader

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS on GRUB2

Run power-management reference code

Boot an OS

Added SMP support to GRUB (smp_call_function)

Implemented various new GRUB commands in C

Nice exploratory environment via menus and command line

Beginnings of a test suite

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS on GRUB2

Run power-management reference code

Boot an OS

Added SMP support to GRUB (smp_call_function)

Implemented various new GRUB commands in C

Nice exploratory environment via menus and command line

Beginnings of a test suite

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS on GRUB2

Run power-management reference code

Boot an OS

Added SMP support to GRUB (smp_call_function)

Implemented various new GRUB commands in C

Nice exploratory environment via menus and command line

Beginnings of a test suite

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS on GRUB2

Run power-management reference code

Boot an OS

Added SMP support to GRUB (smp_call_function)

Implemented various new GRUB commands in C

Nice exploratory environment via menus and command line

Beginnings of a test suite

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Early testsuite functionality

menuentry "Power management test suite ..." {

...

test_msr_consistency "Max non-turbo ratio" \

0xCE --mask=0xff00

test_pci "Bus master disable" \

0 31 0 0xA9 --bytes=1 --shift=2 --mask=1 1

test_msr "C1 Auto Demotion Enable" \

0xe2 --shift=26 --mask=1 1

...

test_summary

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Expressiveness

Based on GRUB2’s scripting language, “bashish”

No real calculation besides --shift and --mask

Shell-like conditionals: if [$x -lt $y -a ...]; then

Shell-like quoting rules (magic characters, but no magic)

All non-trivial functionality required C

Configuration files just glued commands together into menus

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

C expression parsing

Evaluate command-line arguments as a C expression

Store results of other commands in environment

cpuid32 --cpu=0 --env --quiet 1

c signature = eax "&" ~ 0xf

if c signature == 0x106a0 ; then

set cpufamily=nhm

...

64-bit integers only, but that’s 90% of what we needed

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What about ACPI?

We could test platform configuration, but what about
platform interfaces?

Do tables contain the right data in the right structure?

Do methods do the right thing, and return the right results?

Hand-parsing ACPI is a bad idea

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What about ACPI?

We could test platform configuration, but what about
platform interfaces?

Do tables contain the right data in the right structure?

Do methods do the right thing, and return the right results?

Hand-parsing ACPI is a bad idea

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

What about ACPI?

We could test platform configuration, but what about
platform interfaces?

Do tables contain the right data in the right structure?

Do methods do the right thing, and return the right results?

Hand-parsing ACPI is a bad idea

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

ACPICA

Portable implementation of ACPI

Already used by Linux and other OSes

Bytecode parser, interpreter

C API

OS-specific interface layer

Ported to GRUB2 in April

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

ACPICA

Portable implementation of ACPI

Already used by Linux and other OSes

Bytecode parser, interpreter

C API

OS-specific interface layer

Ported to GRUB2 in April

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

ACPI testing

Find and parse tables

Execute methods

Display and check results

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Scripting, again

Lack of decent scripting becoming a serious problem

ACPI test functions written entirely in C

No sensible way to drive from shell scripting

Doesn’t allow exploration from the command line

Nobody other than us would ever write tests

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Scripting, again

Lack of decent scripting becoming a serious problem

ACPI test functions written entirely in C

No sensible way to drive from shell scripting

Doesn’t allow exploration from the command line

Nobody other than us would ever write tests

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Python

Ported CPython 2.7 to GRUB in May

Wrote a C/POSIX compatibility layer

Floating-point support via “fdlibm”

Ported much of the Python standard library

Added “bits” and “acpi” modules

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Scripting problems: solved!

Lists, dictionaries, tuples, strings, bignums, floats

Sorting, searching, comparisons, math

Printing and formatting

Low-level functions in C, logic in Python

CPU and chipset registers

PCI

ACPI method evaluation and value decoding

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Scripting problems: solved!

Lists, dictionaries, tuples, strings, bignums, floats

Sorting, searching, comparisons, math

Printing and formatting

Low-level functions in C, logic in Python

CPU and chipset registers

PCI

ACPI method evaluation and value decoding

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Scripting problems: solved!

Lists, dictionaries, tuples, strings, bignums, floats

Sorting, searching, comparisons, math

Printing and formatting

Low-level functions in C, logic in Python

CPU and chipset registers

PCI

ACPI method evaluation and value decoding

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Python scripting sample

Run an ACPI method on every CPU; collect the unique values and
corresponding CPUs:

for cpupath in cpupaths:

value = acpi.evaluate(cpupath + "." + method)

uniques.setdefault(value, []).append(cpupath)

...

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Implementing GRUB commands in Python

We still need the GRUB command-line tools

Useful for exploration and compatibility

We don’t want to write them in C

Added GRUB commands implemented via Python callbacks

Deleted a pile of C code

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Implementing GRUB commands in Python

We still need the GRUB command-line tools

Useful for exploration and compatibility

We don’t want to write them in C

Added GRUB commands implemented via Python callbacks

Deleted a pile of C code

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Logging test results

GRUB has no file write support

Testsuites print results on the screen

A record would be nice

Much like a kernel panic: got a camera?

Serial port, remote KVM. . .

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Logging test results

GRUB has no file write support

Testsuites print results on the screen

A record would be nice

Much like a kernel panic: got a camera?

Serial port, remote KVM. . .

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Hammer, meet nail

We can write data to memory

GRUB can reserve memory so the OS doesn’t overwrite it

Write special-case code, and read data from /dev/mem?

Linux knows how to read ACPI tables

GRUB knows how to write them

GRUB only provides a command-line acpi command

acpi reads the ACPI table from a file

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Hammer, meet nail

We can write data to memory

GRUB can reserve memory so the OS doesn’t overwrite it

Write special-case code, and read data from /dev/mem?

Linux knows how to read ACPI tables

GRUB knows how to write them

GRUB only provides a command-line acpi command

acpi reads the ACPI table from a file

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Hammer, meet nail

We can write data to memory

GRUB can reserve memory so the OS doesn’t overwrite it

Write special-case code, and read data from /dev/mem?

Linux knows how to read ACPI tables

GRUB knows how to write them

GRUB only provides a command-line acpi command

acpi reads the ACPI table from a file

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Hammer, meet nail

We can write data to memory

GRUB can reserve memory so the OS doesn’t overwrite it

Write special-case code, and read data from /dev/mem?

Linux knows how to read ACPI tables

GRUB knows how to write them

GRUB only provides a command-line acpi command

acpi reads the ACPI table from a file

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

FUSE for Python and GRUB

GRUB has devices like (hd0,0)

We added a (python) device in August

Reading (python)/foo invokes a Python callback

Copy Python output to an internal log

grub> acpi (python)/acpilog

linux# dd if=/sys/firmware/acpi/tables/BITS

bs=1 skip=36 of=bits.log

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

FUSE for Python and GRUB

GRUB has devices like (hd0,0)

We added a (python) device in August

Reading (python)/foo invokes a Python callback

Copy Python output to an internal log

grub> acpi (python)/acpilog

linux# dd if=/sys/firmware/acpi/tables/BITS

bs=1 skip=36 of=bits.log

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

FUSE for Python and GRUB

GRUB has devices like (hd0,0)

We added a (python) device in August

Reading (python)/foo invokes a Python callback

Copy Python output to an internal log

grub> acpi (python)/acpilog

linux# dd if=/sys/firmware/acpi/tables/BITS

bs=1 skip=36 of=bits.log

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Fun with writable files

configfile (python)/dynamic-menu.cfg

initrd (python)/initramfs.cpio

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Fun with writable files

configfile (python)/dynamic-menu.cfg

initrd (python)/initramfs.cpio

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Current status of BITS

Framework for testing, configuration, and exploration

ACPI method evaluation

Python scripting in a ring 0, pre-OS environment

Test suites in areas of our expertise

Power management configuration
P-state ratios
C-state residency
CPU configuration registers
SMI frequency/latency and real-time response

Converting tests and commands to Python

Used by BIOS developers before shipping boards

BIOS problems actually get fixed!

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

Current status of BITS

Framework for testing, configuration, and exploration

ACPI method evaluation

Python scripting in a ring 0, pre-OS environment

Test suites in areas of our expertise

Power management configuration
P-state ratios
C-state residency
CPU configuration registers
SMI frequency/latency and real-time response

Converting tests and commands to Python

Used by BIOS developers before shipping boards

BIOS problems actually get fixed!

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS needs you!

We have a long list of requested tests

We have two developers

What platform functionality do you care about?

What bugs have you observed?

What do you want to make sure new BIOSes get right?

We can help!

Come play with low-level functionality in high-level Python

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS needs you!

We have a long list of requested tests

We have two developers

What platform functionality do you care about?

What bugs have you observed?

What do you want to make sure new BIOSes get right?

We can help!

Come play with low-level functionality in high-level Python

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS needs you!

We have a long list of requested tests

We have two developers

What platform functionality do you care about?

What bugs have you observed?

What do you want to make sure new BIOSes get right?

We can help!

Come play with low-level functionality in high-level Python

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS needs you!

We have a long list of requested tests

We have two developers

What platform functionality do you care about?

What bugs have you observed?

What do you want to make sure new BIOSes get right?

We can help!

Come play with low-level functionality in high-level Python

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

BITS needs you!

We have a long list of requested tests

We have two developers

What platform functionality do you care about?

What bugs have you observed?

What do you want to make sure new BIOSes get right?

We can help!

Come play with low-level functionality in high-level Python

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

For more information

http://biosbits.org

Download an .iso and play

Download the code and hack

Drop us an email

Questions?

Josh Triplett and Burt Triplett BITS: BIOS Implementation Test Suite

http://biosbits.org

