

Speeding up TCP's loss recovery

Tail loss probe (TLP)
TCP with forward error correction (TCP-FEC)

Nandita Dukkipati nanditad@google.com

Linux Plumbers Conference, August 2012.

Motivation

Lossy responses last 10 times longer than lossless ones.

6.1% responses and 10% TCP connections experience losses.

30% losses recovered by TCP's fast recovery, 70% by timeouts.

Our contributions

PRR: make fast recovery even faster. (Linux 3.2-rc1)

TLP: convert timeouts to fast recoveries.

FEC: 0-RTT loss recovery.

Tail loss probe (TLP)

Problem: timeouts are expensive for short transfers

- Timeout recovery is 10-100x longer compared to fast recovery
- Tail losses are the majority
 [A L *] pattern more common than [A L * S * L].

TLP key idea: convert timeouts to fast recovery

Retransmit last segment in 2.RTT to trigger
 SACK information and invoke fast recovery

TLP pseudo code

Probe timeout (PTO): timer event indicating that an ACK is overdue.

Schedule probe on transmission of new data in Open state:

- -> Either cwnd limited or application limited.
- -> RTO is farther than PTO.
- -> FlightSize > 1: schedule PTO in max(2*SRTT, 10ms).
- -> FlightSize == 1: PTO is max(2*SRTT, 1.5*SRTT + WCDelAckT)

When probe timer fires:

- (a) If a new previously unsent segment exists:
 - -> Transmit new segment.
 - -> FlightSize += SMSS. cwnd remains unchanged.
- (b) If no new segment exists:
 - -> Retransmit the last segment.
- (c) Reschedule PTO.

ACK processing:

- -> Cancel any existing PTO.
- -> Reschedule PTO relative to time at which the ACK is received

TLP experiments results

- 2-way experiment over 10 days: Linux baseline versus TLP.
- 6% avg. reduction in HTTP response latency for image search.
- 10% reduction in RTO retransmissions.
- 0.6% probe overhead.

TLP properties

- Property 1: Unifies recovery regardless of loss position.
- Property 2: fast recovery of any N-degree tail loss for any sized transaction.

loss position	scoreboard after TLP ACKed	mechanism	outcome
AAAL	AAAA	TLP loss detection	All repaired
AALL	AALS	Early retransmit	All repaired
ALLL	ALLS	Early retransmit	All repaired
LLLL	LLLS	FACK fast recovery	All repaired
>=5 L	L S	FACK fast recovery	All repaired

Detecting repaired losses: basic algorithm

- Problem: congestion control not invoked if TLP repairs loss and the only loss is last segment.
- Basic idea
 - TLP episode: N consecutive TLP segments for same tail loss.
 - End of TLP episode: ACK above SND.NXT.
 - Expect to receive N TLP dupacks before episode ends
- Algorithm is conservative: cwnd reduction can occur with no loss.
 - Delayed ACK timer.
 - ACK loss.

TCP with forward error correction (TCP-FEC)

10

- Goal: reduce tail latency via 0-RTT loss recovery.
- Key design aspects
 - FEC is integrated with TCP.
 - Encoding scheme.
 - Signaling of encoded segments.
 - Congestion response.
 - Middlebox considerations.

FEC encoding approach

- Simple XOR based checksum encoding.
- Data encoded in blocks of MSS size bytes.
 - Robustness against repacketizations and variable length pkts.

Probability

Interleaved XOR supports recovery of back-to-back losses.

- Loss stats
 - 40% losses (10-pkt burst) are single packet losses
 - Probability of atmost 2 packets lost > 0.5

Signaling FEC information

- Basic approach
 - Reuse SEQ number: FEC packet carries sequence# of first encoded byte.
 - New TCP option distinguishes FEC packet from original SEQ.
- Example FEC option

	Option kind		Option ength	FEC opt		Flags		Encoding range	
0	8	3	16	6	32	4	10		64

SEQ=10000; MSS=1460; Encoding range=14600 XOR range 10000 - 24600

- Three flavors of options:
 - FEC negotiation in SYN/ACK handshake.
 - FEC option in FEC packets.
 - FEC option in every DATA packet.

FEC Acknowledgements

- Successful recovery
 - Treated similar to a successful fast retransmit.
 - Sender reduces congestion window like in fast recovery.
 - Loss recovery notification similar to explicit congestion notification (ECN).
- Failed recovery
 - Key: FEC packet has information on range of transmitted sequence.
 - Sender is notified of the sequence range that is lost.
 - Sender triggers fast recovery.

Examples of successful and failed recoveries

Middleboxes and alternative designs

Middlebox issue	Solution		
Rewrite ISN; preserve unknown options.	Relative sequence numbers.		
Removal of new TCP options.	Negotiate option in handshake; Enable option in every packet carrying data.		
Rewrite ACK number to match state of middlebox.	Retransmit recovered data; suppress DSACK block in ACK.		
Resegmentation (split, coalesce).	Segments with options are OK.		
Buffering OOO segments.	None - no worse than today.		
Normalization: rewrite payloads for previously seen sequence ranges.	(potential: Checksum FEC payload		

Reference: <u>Is it still possible to extend TCP?</u>

Alternative designs

- No reuse of SEQ numbers: FEC and original have different SEQ.
- Receiver and sender maintain running checksum.

What's next?

- FEC prototype ~1500 LoC.
- Experiments with FEC.
 - Impact on Web page download time.
 - FEC performance in mobile networks.
- Pursue IETF standardization.
- FEC should eventually replace TLP.
- Near term
 - TLP to net-dev.
 - TLP Internet Draft: http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-00