
Concurrency Kit
Towards accessible non-blocking technology for C

Samy Al Bahra
AppNexus, Inc.
August 26, 2012

1



History

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

Core 8

Core 9

Core 10

Core 11

Core 12

Core 13

Core 14

Core 15

2



Motivation

Research and develop scalable synchronization methods for NUMA
architectures.

What did we need?

• Concurrent memory model

• Support for atomic operations

3



Concurrency Primitives

Spinlocks

Algorithm cas dec_zero faa fas load store

anderson ⋄ ⋄ ⋄ ⋄
cas ⋄ ⋄
clh ⋄ ⋄ ⋄

dec ⋄ ⋄ ⋄
fas ⋄ ⋄

ticket ⋄ ⋄ ⋄
ticket_pb ⋄ ⋄ ⋄

mcs ⋄ ⋄ ⋄ ⋄

RW
Algorithm cas inc dec faa fas load store RMO

brlock ◦ ◦ ⋄ ⋄ ⋄
bytelock ⋄ ⋄ ⋄ ◦ ⋄ ⋄ ⋄

rwlock_naive ◦ ⋄ ⋄ ◦ ⋄ ⋄ ⋄

4



Concurrency Primitives

Atomic Operation Support
Operation apr atomic_ops ck gcc glib liblfds urcu

add ⋄ ⋄
and ⋄ ⋄ ⋄
btc ⋄
btr ⋄
bts ⋄
cas ⋄ ⋄ ⋄ ⋄

cas2 ⋄ ⋄
cas2_value ⋄ ⋄ ⋄
cas_value ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

dec ⋄ ⋄ ⋄
dec_zero ⋄ ⋄

faa ⋄ ⋄ ⋄ ⋄ ⋄
fas ⋄ ⋄ ⋄ ⋄ ⋄
inc ⋄ ⋄ ⋄ ⋄ ⋄

inc_zero ⋄
load ⋄ ⋄ ⋄ ⋄ ⋄
neg ⋄

neg_zero ⋄
not ⋄
or ⋄ ⋄ ⋄ ⋄

store ⋄ ⋄ ⋄ ⋄ ⋄
sub ⋄ ⋄
xor ⋄ ⋄

Memory Model G R R G G N R

5



Memory Models

Intel Architecture Manual, Volume 3A, 8.5
"Software should access semaphores (shared memory used for signalling
between multiple processors) using identical addresses and operand lengths.
For example, if one processor accesses a semaphore using a word access,
other processors should not access the semaphore using a byte access."

• Is wait-free atomic snapshot with respect to loads and CAS2 possible?

• Implications on algorithms with asymmetric accesses.

• How can higher-level memory models accomodate ordering exceptions?

Bytelock read acquisition in the real world: 4 ticks → 38 ticks

6



Concurrency Primitives

Memory Ordering Modifiers
Library LoadLoad LoadStore StoreLoad StoreStore

atomic_ops ◦ ⋄ ◦ ◦ ⋄ ◦ ◦ ⋄ ◦ ◦ ⋄ ◦
ck • ⋄ ⋄ • ⋄ ⋄

freebsd ⋄ ⋄ ⋆ ⋄ ⋄ ⋆
linux • ⋄ ⋄ • ⋄ ⋄
urcu • ⋄ ⋄ • ⋄ ⋄

x86-64

Pow
er

SPA
R

C

x86-64

Pow
er

SPA
R

C

x86-64

Pow
er

SPA
R

C

x86-64

Pow
er

SPA
R

C

• = NOP (strict fallback)
◦ = NOP
⋆ = Full semantics
⋄ = Yes

7



Concurrency Primitives

Portability

A port should require little besides atomic load, store, fences and a single
universal atomic primitive.

add faa

cas

1

2

∞

Consensus Number

Progress Guarantees

WF

WF

LF

inc

Transparency

Non-blocking progress guarantees should reflect rank in the wait-free
hierarchy.

8



Concurrency Primitives

The ABA Problem

• Algorithms subject to CAS-based speculation are prone to ABA.

• ABA-safety typically provided with ABA counters or SMR.

• Currently, we have pigeon-holed LL/SC-based architectures into SMR.

N1548
"The weak compare-and-exchange operations may fail spuriously, that is,
return zero while leaving the value pointed to by expected unchanged."

↓

The operation is guaranteed to fail if object was the destination of any
concurrent write operations, regardless of functional side-effects.

9



Concurrency Primitives

Atomics License
atomic_ops ck urcu

MIT Revised BSD LGPL2.1

LGPL2 is restrictive
"If such an object file uses only numerical parameters, data structure layouts
and accessors, and small macros and small inline functions (ten lines or less in
length), then the use of the object file is unrestricted, regardless of whether it
is legally a derivative work ... Otherwise, if the work is a derivative of the
Library, you may distribute the object code for the work under the terms of
Section 6. Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself."

10



Summary of Opinions

• There is no silver bullet, concurrent applications that care about
performance eventually require their own concurrent memory model

• A model should:
▶ Expose wait-free hierarchy
▶ Allow for exceptions to the memory model

• An implementation should optimize for underlying instruction set

• LL/SC needs love, ABA-safety yields fair number of performance wins

11



Safe Memory Reclamation

12



Safe Memory Reclamation

Examples of Progress

"Thank you for your message. I have no knowledge of the legal issues related
to the use of [...], or to represent [...]'s position ..."

State of the World
EBR HP PTB PC QSBR

◦ • • ◦ ◦
◦ = Available (at least partially) • = Locked

13



Safe Memory Reclamation

Documentation

Patents

Literature Survey

• HP, RCU, QSBR and PTB have comprehensive documentation
• Proxy collectors backed by mailing list threads and one brief blog post

• A handful of paragraphs exploring epoch-based reclamation
▶ Primarily thanks to Thomas Hart and Paul McKenney

14



Safe Memory Reclamation

Bringing hobbyists and academics back into the fold...

• Define the performance metrics for SMR.
▶ Identify characteristic workloads
▶ What can we quantify?

• Provide a starting point...
▶ Reference Implementations
▶ Documentation
▶ Open Problems
▶ Bounties and grants

15



Safe Memory Reclamation

Epoch Reclamation

• Amortizing protected section begin/end yields performance that is
practically on-par with QSBR.

• Implemented lock-free and wait-free variants built on deferral scheme
with thread-local retirement lists.

• Still vulnerable to unbounded memory growth.

16



Safe Memory Reclamation

PC, QSBR and EBR are all non-intrusive forms of SMR

PnP SMR
Read-Side

EBR PC QSBR

epoch_read_begin();

[…]

epoch_read_end();

pc_addref();

[…]

pc_delref();

rcu_read_lock();

[…]

rcu_read_unlock();

Write-Side (deferral)

EBR PC QSBR

epoch_write_begin();

[…]

epoch_write_end();

epoch_defer(&a->e, destroy);
[…]

pc_defer(&a->e, destroy);

[…]

qsbr_defer(&a->e, destroy);

• Do we want to generalize an interface?
• Can we create a general interface to these forms of SMR?

17



Summary of Opinions

• Documentation and reference implementations are underwhelming for
neophytes (exception is RCU and QSBR).

• No metrics and standards of quality for prospective contributors.

• NBDS is vulnerable to SMR-scheme lock-down, difficult to plug and play
schemes for various workloads.

• There is a lack of independent surveys.

18



Data Structures

19



Data Structures

State of the World
Structure SPSC SPMC SPNC UPMC MPMC MPSC MPNC

bag ◦/◦
bitmap ◦/◦

fifo ◦/◦ •/•
ht ◦/•

stack •/• •/• ◦/-
ring ◦/◦

queue.h ◦/◦

◦ = WF • = LF
Format is <producer>/<consumer>

20



Data Structures

Hash tables for unmanaged languages

• Bytestring keys allow for program-defined lifetime semantics

• Well-defined semantics

• Supports replace, insert, growth, delete, get, iteration

• Power-of-2 hash table with linear-probing/double-hashing hybrid

• Statistically a wait-free hash table

Future Work

• Provide an MPMC variant

• Trim down constant factors associated with interface

• Allow for user-defined upper-bounds on retry probability

• Allow bytestring tables to emulate memory savings of pointer-packing

• Expose memory hierarchy to probe sequence

21



Data Structures

Future Work

• RADIX tree

• Set

• Skiplist

• T-Tree (SPMC)

22



Summary of Opinions

• First instinct is to generalize to MPMC while interesting design patterns
and avenues can be found through SPMC

• Allow applications to define lifetime of referenced objects with minimal
data duplication

• General purpose libraries should allow for workload specialization

• Reference implementations needed for the classics

• Expose rank in wait-free hierarchy

23



The End

http://concurrencykit.org
http://appnexus.com

24



Legal

Nothing in this presentation constitutes legal advice. Consult with a lawyer,
accountant, and insurance professional before making your decisions. The
views and opinions in this presentation represent my own and not those of
people, institutions or organizations I am affiliated with unless stated explicitly.
This presentation does not represent the views, position or attitudes of my
employer, their clients, or any of their affiliated companies.

25


