
1| Presentation Title | Month ##, 2011 | Public

Click icon to add picture Click icon to add picture

Next-generation Interrupt Virtualization
for KVM

Jörg Rödel
August 2012

2 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

KVM Interrupt Virtualization Today

● KVM emulates local APIC and IO-APIC

● All reads and writes intercepted

● Interrupts can be queued from user space or kernel space

● IPI cost is performance-critical

● Costs at least two intercepts and a host-level IPI today

● Without x2apic, even more intercepts

● For device pass-through, interrupt virtualization is performance-critical
too

● Every device interrupt causes an intercept

● A lot more expensive than bare metal

3 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Hardware Support

● As of today hardware support for interrupt virtualization is very limited

● On AMD hardware there is direct CR8 (TPR) access for the guest

● Used only by 64bit guests

● A new hardware feature is planned on AMD:

Advanced Virtual Interrupt Controller

(or AVIC)

4 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Advanced Virtual Interrupt Controller

● AVIC is designed to accelerate the most common interrupt system
features for the guest

● Inter-processor interrupts

● TPR accesses

● Interrupts from assigned devices

● AVIC virtualizes the local APIC for each VCPU

● KVM allocates a virtual APIC backing page (vAPIC page)

● Guest physical APIC ID table

● Guest logical APIC ID table

● No support for X2APIC in the initial version

5 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

The Doorbell Mechanism

● Doorbell is used to signal AVIC interrupts between physical CPUs

● Source PCPU figures out physical APIC ID of the destination

● When destination VCPU is running (IsRunning==1) it sends a Doorbell
message

● IOMMU can also send Doorbell messages to PCPUs

● IOMMU checks if VCPU is running too

● For not running VCPUs it sends an event log entry

● MSR can also be used to issue Doorbell messages by hand

● When Doorbell is received the pCPU re-evaluates the IRR of the vAPIC
page and delivers interrupt as possible and necessary

6 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Guest Virtual APIC Backing Page

● Used to store local APIC contents for one VCPU

● Most fields can be read without intercepts

● Writes to non-accelerated fields cause intercepts

● Currently accelerated fields

● Offset 0x80: TPR

● Offset 0xB0: EOI (for edge-triggered interrupts only)

● Offset 0x300: ICR Low

● Offset 0x310: ICR High

● Accelerated means that an access is handled in hardware and does not
cause an intercept when possible

7 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Running and not-running VCPUs

● When an interrupt needs to be delivered to VCPU, hardware:

● Looks up the physical CPU (PCPU) the VCPU is running on

● Sends a Doorbell message to this PCPU

● The PCPU evaluates IRR of vAPIC page and delivers interrupt to guest if
necessary

● If target PCPU is not running software is notified about a new interrupt
for this VCPU

● In case of IPI, with an intercept on the originating VCPU

● In case of PCI, device interrupt with an IOMMU event log entry

8 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Physical APIC ID Table

● Maps guest physical APIC IDs to host vAPIC pages

● Contains the IsRunning bit which indicates if the VCPU this APIC ID
belongs to is currently in guest mode

● If VCPU is running, it also contains the host physical APIC ID of the
core it is running on

● This table is entirely maintained by KVM

9 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Logical APIC ID Table

● Maps guest logical APIC IDs to guest physical APIC IDs

● Indexed by guest logical APIC ID

● Supports different address modes

● Flat mode

● Cluster mode

● Maintained by KVM, too

● Entry is simpler than in the physical APIC ID table

10 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Support in the IOMMU

● For AVIC accelerated device pass-through, the IOMMU is necessary

● IOMMU delivers interrupt directly to destination PCPU using Doorbell
message

● The interrupt remapping table set-up is changed for assigned devices

● By design, the MSI(X) capabilities are still managed by KVM

● A separate IsRunning bit is maintained for the IOMMU

● Performance reasons

● Minimize the system memory data structures the IOMMU needs to access

11 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

AVIC Support in KVM

● Support can be implemented mostly in the KVM-AMD module

● Some changes to the current local APIC emulation necessary

● Change the layout of the APIC register data structure to match its offsets
with the real local APIC register offsets

● KVM x86 core code will allocate the vAPIC pages

● vAPIC page needs to be mapped in the nested page table

● Problematic

● Likely requires some changes in the KVM SoftMMU code

● Set-up of VMCB, physical, and logical APIC ID tables happens in the
KVM module

12 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

AVIC Support in KVM for Device Pass-through

● Changes to VFIO required

● When destination VCPU is running direct delivery should be configured

● For not-running VCPUs, the current mechanism should still work

● Ideally, this is fully transparent to user space

● Details are not worked out yet

13 | Next-generation Interrupt Virtualization for KVM | August 2012 | Public

Trademark Attribution

AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States
and/or other jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks
of their respective owners.

©2012 Advanced Micro Devices, Inc. All rights reserved.

Questions?

	Slide 1
	SAMPLE SLIDE | With a Sample Subhead
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide14

