
1

Unifying Power Policies

Linux Plumbers Conference 2013

Morten Rasmussen

2

Existing Power Policies

 Frequency scaling: cpufreq
 Generic governor + platform specific driver

 Decides target frequency based on overall cpu load.

 Idle state selection: cpuidle
 Generic governor + platform specific driver

 Attempts to predict idle time when cpus enter idle.

 Scheduler:
 Completely generic and unaware of cpufreq and cpuidle policies.

 Determines when and where a task runs, i.e. on which cpu.

3

cpu1cpu1

Existing Power Policies

cpu0cpu0

Freq Load

T
Scheduler

policy

cpufreq

policy

cpuidle

policy

Powerrq

T
Load balance

idle

Current load (pre-3.11)

Current load (3.11)

 No coordination between power policies to avoid
conflicting/suboptimal decisions.
 Is it a problem?

4

Issues

 Scheduler->cpufreq->scheduler cpu load feedback loop
 From 3.11 the scheduler uses tracked load for load-balancing.

 Tracked load is impacted by frequency scaling. Lower frequency
leads to higher tracked load for the same task.

 Hindering new power-aware scheduling features
 Task packing: Needs feedback from cpufreq to determine when cpus

are full.

 Topology aware task placement: Needs topology information inside
the scheduler to determine the most optimal cpus to use when the
system is partially loaded.

 Heterogeneous systems (big.LITTLE): Needs topology information
and accurate load tracking.

5

Wish-list

 Scale invariant load tracking
 Fix scheduler->cpufreq->scheduler feedback loop

 Better task packing

 Needed for heterogeneous systems

 Topology awareness
 Improve idle decisions

 Scheduler frequency scaling awareness

 Thermal/power budget management

 Heterogeneous system (big.LITTLE) support

6

Power scheduler proposal
Power driver (drivers/*/?.c)Scheduler (fair.c) Power scheduler (power.c)

Helper function

library

Driver registrationsched_domain

Hierarchy

(Generic topology)

Load balance

algorithms

Detailed platform

topology

Platform HW driver

Load tracking

Platform perf. and

energy monitoring

Performance state

selection

Sleep state

selection
“Important tasks”

cgroup

+ New generic info

(pack, heterogeneous, ...)

+ Packing,

+ P & C-state aware,

+ Heterogeneous

+ Scale invariant

Abstract power

driver/topology

interface

Existing policy algorithms

Library (drivers/power/?.c)

7

Power driver interface

 Platform agnostic scheduler interface:
 The scheduler can only request information not HW state changes

from power driver.

 The scheduler provides hints to the power driver or hardware. Hints
may be ignored.

 Keeps platform specific topology/hardware information in the driver.

 Detailed platform information is hard to represent in a generic
(and useful) data structure in fair.c. It is even harder to design a
one fits all policy.

 Driver is supported by generic helper function library

 Reuse common algorithms across drivers

 Flexibility to have platform specific optimizations without
bypassing existing frameworks (intel_pstate.c).

8

Proposed driver interface (scheduler)
API Description

max_capacity(cpu) Can the cpu go any faster? At highest available P-state.

increase_capacity(x) Increase capacity by x hint. Go to higher P-state if
possible. Driver may ignore x.

decrease_capacity(x) Decrease capacity by x hint. Go to lower P-state if
possible. Driver may ignore x.

task_boost(cpu) Important task schedule boost hint. Power driver may
give priority to this cpu in thermal or power constrained
situations. For example for turbo mode.

get_best_wake_cpu() Returns optimal wake-up target cpu when more cpus are
needed.

get_best_sleep_cpu() Returns the best cpu to idle when fewer are needed.

enter_idle() Let the driver put the cpu to sleep.

load_scale(cpu) Return tracked load scaling factor to compute scale
invariant tracked load. Possibly P-state or PMU based.

init_sched_domain(cpu,
level)

Returns sched_domain flags and variables for
sched_domain initialization.

9

Proposed driver interface (driver)
API Description

power_driver_register() Register platform specific power driver.

idle_gov_menu() “menu” idle governor heuristics from library.

idle_gov_ladder() “ladder” idle governor heuristics from library.

freq_gov_ondemand() “ondemand” freq governor heuristics from library.

freq_gov_pid() intel_pstate.c style freq governor from library.

...

10

V1 design feedback
 Don't use cpu_power to restrict scheduling.

 Possible solution: Integrate packing directly into load-balancing logic.

 Some platforms have (partial) HW power management that
may/will ignore OS requests.
 Suggested solution: Abstract platform driver interface that gives hints

rather than requests.

 We cannot have two captains (power vs. process scheduler)
 Possible solution 1: Implement all policy details in fair.c adding a

significant amount of complexity.

 Possible solution 2: Abstract the policy decisions and move the
decision to the power driver whenever possible. Provide helper
function library to support power driver.

11

Summary

 Several problems to address and the solutions will affect
each other.

 Patches to solve some of the problems individually have
been posted on LKML, but never made any progress towards
being accepted.

 A unified approach is needed.

