
Colin Guthrie (Tribalogic Ltd), Timo Müller (BMW Car IT GmbH)

SMART SYSTEM SHUTDOWN.
How systemd inhibitors can be used to handle eCall and telephony scenarios?

BMW Car IT GmbH



2014-10-15Smart System Shutdown, BMW Car IT GmbH Page 2

TALKING TO YOUR FRIEND.
REGULAR PHONECALL.



2014-10-15Smart System Shutdown, BMW Car IT GmbH Page 3

MEDICAL EMERGENCY.
MANUAL eCALL.



2014-10-15Smart System Shutdown, BMW Car IT GmbH Page 4

CAR ACCIDENT.
AUTOMATIC eCALL.



2014-10-15Smart System Shutdown, BMW Car IT GmbH Page 5

HOW CAN WE USE SYSTEMD IN THESE CASES?
LET'S HAVE A LOOK AT INHIBITORS.



2014-10-15Smart System Shutdown, BMW Car IT GmbH Page 6

RESOURCES.

www.press.bmwgroup.com



  

systemd: controlling stopping 
distance

systemd: controlling stopping 
distance

Colin Guthrie
Mageia Contributor
Colin Guthrie
Mageia Contributor



  

Who am IWho am I

● Linux enthusiast for many years

● Contributor to Mandriva and co-founder of community-
run Mageia

● Was responsible for X and Sound in Mandriva

● Upstream PulseAudio maintainer

● Now responsible for boot+init in Mageia

● Integrated systemd

● Involved in upstream and attend several conferences 
and hackfests 

● Linux enthusiast for many years

● Contributor to Mandriva and co-founder of community-
run Mageia

● Was responsible for X and Sound in Mandriva

● Upstream PulseAudio maintainer

● Now responsible for boot+init in Mageia

● Integrated systemd

● Involved in upstream and attend several conferences 
and hackfests 



  

What is systemdWhat is systemd

● Modern, stateful init system (PID 1)

● But more!

● Base toolkit for building an OS

● Essential building blocks for bootstrapping any 
modern linux system

● Modern, stateful init system (PID 1)

● But more!

● Base toolkit for building an OS

● Essential building blocks for bootstrapping any 
modern linux system



  

PID 1PID 1

● Kernel hands over control

● Responsible for starting and stopping 
subsystems

● And, with various constraints and time limits, for 
shutting down the system cleanly

● Kernel hands over control

● Responsible for starting and stopping 
subsystems

● And, with various constraints and time limits, for 
shutting down the system cleanly



  

InhibitorsInhibitors

● Ability to block certain system operations
– Shutdown

– Sleep

– Hardware-led actions (Lids on Laptops, Suspend 
Keys etc)

● NOT part of PID 1

● Implemented on top of systemd as in logind

● Ability to block certain system operations
– Shutdown

– Sleep

– Hardware-led actions (Lids on Laptops, Suspend 
Keys etc)

● NOT part of PID 1

● Implemented on top of systemd as in logind



  

logindlogind

● Proxy for many raw operations of systemd with 
logic and authorisation (polkit) taken into 
account

● Tracks user sessions – who is active and who 
has access to various h/w resources (via 
udev/uaccess)

● High level concepts not considered core part of 
PID1 e.g. inhibiting various operations

● Proxy for many raw operations of systemd with 
logic and authorisation (polkit) taken into 
account

● Tracks user sessions – who is active and who 
has access to various h/w resources (via 
udev/uaccess)

● High level concepts not considered core part of 
PID1 e.g. inhibiting various operations



  

InhibitorsInhibitors

● Important point: For the system to work with 
inhibitors, all operations must go via logind
– If something uses PID1 directly to shutdown, 

inhibitors will be ignored

● Two types of inhibitors
– Delay

– Block

● Important point: For the system to work with 
inhibitors, all operations must go via logind
– If something uses PID1 directly to shutdown, 

inhibitors will be ignored

● Two types of inhibitors
– Delay

– Block



  

Inhibitors: delayInhibitors: delay

● Only applicable to sleep and hibernate

● Allows callbacks to be triggered before state is 
entered
– Instant Messaging clients can logout/set “away”

– Lock screens can lock screen before suspending!

● Subject to a (global) InhibitDelayMaxUSec 
setting (logind.conf) which defaults to 5s

● Only applicable to sleep and hibernate

● Allows callbacks to be triggered before state is 
entered
– Instant Messaging clients can logout/set “away”

– Lock screens can lock screen before suspending!

● Subject to a (global) InhibitDelayMaxUSec 
setting (logind.conf) which defaults to 5s



  

Inhibitors: blockInhibitors: block

● Prevent native handling of operation
– i.e. stop logind proxying request to PID1

● In Desktop context, DE may want to handle lid-
switch on laptops to implement it's own high-
level policy
– e.g. do not suspend on lid closure if external 

monitor is attached

– logind default is to “play it safe”

● Prevent native handling of operation
– i.e. stop logind proxying request to PID1

● In Desktop context, DE may want to handle lid-
switch on laptops to implement it's own high-
level policy
– e.g. do not suspend on lid closure if external 

monitor is attached

– logind default is to “play it safe”



  

Handling callsHandling calls

● Ensure all shutdown triggers go via logind – not 
directly asking PID1

● When call in in progress request a “block” 
inhibit
– Recommended: via DBus

– systemd-inhibit --mode block --what 
shutdown:sleep:idle --who “Telephony” 
--why “Call in progress”

● Ensure all shutdown triggers go via logind – not 
directly asking PID1

● When call in in progress request a “block” 
inhibit
– Recommended: via DBus

– systemd-inhibit --mode block --what 
shutdown:sleep:idle --who “Telephony” 
--why “Call in progress”



  

Handling callsHandling calls

● To block or delay?

● Block calls will simply block while the lock file 
descriptor is open – no callback i.e. no way to 
know whether a shutdown request has come in 
during call, and thus no way to continue it after call 
has ended

● Delay of 5s is barely enough time to emit a blood 
curdling scream before the call ends!

● Delay probably still more appropriate

● To block or delay?

● Block calls will simply block while the lock file 
descriptor is open – no callback i.e. no way to 
know whether a shutdown request has come in 
during call, and thus no way to continue it after call 
has ended

● Delay of 5s is barely enough time to emit a blood 
curdling scream before the call ends!

● Delay probably still more appropriate



  

Loooong delay?Loooong delay?

● Possibly increase default delay to very long 
value (longest possible phone call)

● Is it too long for other uses of delay inhibitors 
(i.e. do you trust the other code not to block too 
long?)

● Perhaps (slight) API change needed to allow 
requesting a per-inhibition delay up to the Max 
value to protect other, less trustworthy code

● Possibly increase default delay to very long 
value (longest possible phone call)

● Is it too long for other uses of delay inhibitors 
(i.e. do you trust the other code not to block too 
long?)

● Perhaps (slight) API change needed to allow 
requesting a per-inhibition delay up to the Max 
value to protect other, less trustworthy code



  

ImplementationImplementation

● PrepareForShutdown() & PrepareForSleep()
– Callbacks triggered at appropriate times

● Could only inhibit when call is initiated
– Would generally ignore callback

● Could inhibit at all times (from boot)
– Callback could do some checks and close fd if no 

call in progress

– Retake it later on resume (or GOTO 10 on boot)

● PrepareForShutdown() & PrepareForSleep()
– Callbacks triggered at appropriate times

● Could only inhibit when call is initiated
– Would generally ignore callback

● Could inhibit at all times (from boot)
– Callback could do some checks and close fd if no 

call in progress

– Retake it later on resume (or GOTO 10 on boot)



  

ResourcesResources

● man (1) systemd-inhibit

● freedesktop.org/wiki/Software/systemd/inhibit

● systemd-devel@lists.freedesktop.org

● man (1) systemd-inhibit

● freedesktop.org/wiki/Software/systemd/inhibit

● systemd-devel@lists.freedesktop.org



  

Questions?Questions?

Any questions?Any questions?


