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SMART SYSTEM SHUTDOWN.
How systemd inhibitors can be used to handle eCall and telephony scenarios?
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TALKING TO YOUR FRIEND.
REGULAR PHONECALL.



2014-10-15Smart System Shutdown, BMW Car IT GmbH Page 3

MEDICAL EMERGENCY.
MANUAL eCALL.
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CAR ACCIDENT.
AUTOMATIC eCALL.
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HOW CAN WE USE SYSTEMD IN THESE CASES?
LET'S HAVE A LOOK AT INHIBITORS.
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RESOURCES.

www.press.bmwgroup.com
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● Linux enthusiast for many years

● Contributor to Mandriva and co-founder of community-
run Mageia

● Was responsible for X and Sound in Mandriva

● Upstream PulseAudio maintainer

● Now responsible for boot+init in Mageia
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● Involved in upstream and attend several conferences 
and hackfests 

● Linux enthusiast for many years

● Contributor to Mandriva and co-founder of community-
run Mageia

● Was responsible for X and Sound in Mandriva

● Upstream PulseAudio maintainer

● Now responsible for boot+init in Mageia

● Integrated systemd

● Involved in upstream and attend several conferences 
and hackfests 



  

What is systemdWhat is systemd

● Modern, stateful init system (PID 1)
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PID 1PID 1

● Kernel hands over control

● Responsible for starting and stopping 
subsystems

● And, with various constraints and time limits, for 
shutting down the system cleanly
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● Ability to block certain system operations
– Shutdown

– Sleep

– Hardware-led actions (Lids on Laptops, Suspend 
Keys etc)
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logindlogind

● Proxy for many raw operations of systemd with 
logic and authorisation (polkit) taken into 
account

● Tracks user sessions – who is active and who 
has access to various h/w resources (via 
udev/uaccess)

● High level concepts not considered core part of 
PID1 e.g. inhibiting various operations
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● Important point: For the system to work with 
inhibitors, all operations must go via logind
– If something uses PID1 directly to shutdown, 

inhibitors will be ignored
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Inhibitors: delayInhibitors: delay

● Only applicable to sleep and hibernate

● Allows callbacks to be triggered before state is 
entered
– Instant Messaging clients can logout/set “away”

– Lock screens can lock screen before suspending!

● Subject to a (global) InhibitDelayMaxUSec 
setting (logind.conf) which defaults to 5s

● Only applicable to sleep and hibernate

● Allows callbacks to be triggered before state is 
entered
– Instant Messaging clients can logout/set “away”

– Lock screens can lock screen before suspending!

● Subject to a (global) InhibitDelayMaxUSec 
setting (logind.conf) which defaults to 5s



  

Inhibitors: blockInhibitors: block

● Prevent native handling of operation
– i.e. stop logind proxying request to PID1

● In Desktop context, DE may want to handle lid-
switch on laptops to implement it's own high-
level policy
– e.g. do not suspend on lid closure if external 

monitor is attached

– logind default is to “play it safe”
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Handling callsHandling calls

● Ensure all shutdown triggers go via logind – not 
directly asking PID1

● When call in in progress request a “block” 
inhibit
– Recommended: via DBus

– systemd-inhibit --mode block --what 
shutdown:sleep:idle --who “Telephony” 
--why “Call in progress”
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Handling callsHandling calls

● To block or delay?

● Block calls will simply block while the lock file 
descriptor is open – no callback i.e. no way to 
know whether a shutdown request has come in 
during call, and thus no way to continue it after call 
has ended

● Delay of 5s is barely enough time to emit a blood 
curdling scream before the call ends!

● Delay probably still more appropriate
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Loooong delay?Loooong delay?

● Possibly increase default delay to very long 
value (longest possible phone call)

● Is it too long for other uses of delay inhibitors 
(i.e. do you trust the other code not to block too 
long?)

● Perhaps (slight) API change needed to allow 
requesting a per-inhibition delay up to the Max 
value to protect other, less trustworthy code
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ImplementationImplementation

● PrepareForShutdown() & PrepareForSleep()
– Callbacks triggered at appropriate times

● Could only inhibit when call is initiated
– Would generally ignore callback

● Could inhibit at all times (from boot)
– Callback could do some checks and close fd if no 

call in progress

– Retake it later on resume (or GOTO 10 on boot)
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● freedesktop.org/wiki/Software/systemd/inhibit
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