
Problem
● GCC makes different optimizations during compilation

● Problem? Could be…

– Depending on how live patches are constructed and
generated

– Some are harmless, some could be fatal if one is not
careful

● As of GCC 6.2

● Only a subset of optimizations. There is more.

1

GCC optimizations
● Inlining

● -fpartial-inlining

– Inline parts of the function

● -fipa-sra

– Removal of unused parameters, passing by
reference → passing by value etc.

● -fipa-cp

– Interprocedural constant propagation. Optimizes
functions if values passed to them are constants.

– Even several clones of a function are possible if a
set of values is limited.

2

GCC optimizations
● -fipa-pure-const

– Discover which functions are pure or constant.

– GCC can eliminate calls to such functions, memory
accesses can be removed etc.

– What if a function is no longer pure const with a fix
applied?

● -fipa-icf

– Identical code folding for functions and read-only
variables. Replaces a function with an equivalent
one.

– Problem for stack unwinder too

3

GCC optimizations
● Code eliminations

int global;

int foo(void) { return 22; }

int main(void)

{

 int i;

 global = 1;

 i = foo();

 if (global == 2) return 11;

 return 33;

}

● But generally always when a function somehow affects
another one.

4

int foo(void)

{

 global = 2;

 return 22;

}

GCC optimizations
● -fipa-ra

– Use caller save registers for allocation if those
registers are not used by any called function. In that
case it is not necessary to save and restore them
around calls.

– Currently disabled thanks to -pg option (gcc bug
#64287), but this can change easily

– Reportedly dubious gain for the kernel

– Only a small fraction of functions affected (~0.5 %)

5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

