Problem

GCC makes different optimizations during compilation

Problem? Could be...

- Depending on how live patches are constructed and
generated

- Some are harmless, some could be fatal if one is not
careful

As of GCC 6.2

Only a subset of optimizations. There is more.




GCC optimizations

Inlining
-fpartial-inlining

— Inline parts of the function
-fipa-sra

- Removal of unused parameters, passing by
reference — passing by value etc.

-fipa-cp

— Interprocedural constant propagation. Optimizes
functions if values passed to them are constants.

- Even several clones of a function are possible if a
set of values is limited.



GCC optimizations

* -fipa-pure-const
— Discover which functions are pure or constant.

— GCC can eliminate calls to such functions, memory
accesses can be removed etc.

- What if a function is no longer pure const with a fix
applied?
* -fipa-icf

- Identical code folding for functions and read-only
variables. Replaces a function with an equivalent

one.
- Problem for stack unwinder too



GCC optimizations

 Code eliminations

int global;
int foo(void) { return 22; }

int main(void)

{
int 1i;
global = 1;
1 = foo();

if (global == 2) return 11;

return 33;

* But generally always when a function somehow affects

another one.

int foo(void)
{
global = 2;
return 22;

}



GCC optimizations

-fipa-ra

Use caller save registers for allocation if those
registers are not used by any called function. In that
case it Is not necessary to save and restore them
around calls.

Currently disabled thanks to -pg option (gcc bug
#64287), but this can change easily

Reportedly dubious gain for the kernel

Only a small fraction of functions affected (~0.5 %)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

