

The kernel’s limits to growth

(LPC/OSS 2017)

Jonathan Corbet
LWN.net

corbet@lwn.net

Quite frankly, this particular discussion (and others before it)
has just made me irritable, and is ADDING pressure. Instead,
I'd suggest that if you have a complaint about how I handle
patches, you think about what I end up having to deal with for
five minutes.

Go away, people. Or at least don't Cc me any more. I'm not
interested, I'm taking a vacation, and I don't want to hear about
it any more. In short, get the hell out of my mailbox.
— Linus Torvalds

Quite frankly, this particular discussion (and others before it)
has just made me irritable, and is ADDING pressure. Instead,
I'd suggest that if you have a complaint about how I handle
patches, you think about what I end up having to deal with for
five minutes.

Go away, people. Or at least don't Cc me any more. I'm not
interested, I'm taking a vacation, and I don't want to hear about
it any more. In short, get the hell out of my mailbox.
— Linus Torvalds, September 1998

Development process scalability

More recently

2.2.0: 1999-01-16
2.4.0: 2001-01-04
2.6.0: 2003-12-17

More recently

2.2.0: 1999-01-16
2.4.0: 2001-01-04
2.6.0: 2003-12-17

The fun of those days
Massive backporting of 2.6 patches to 2.4
Vendor Frankenstein kernels
Lots of out-of-tree code shipped
Painful upgrades

So what did we do?

The “upstream first” rule

So what did we do?

The “upstream first” rule

Distributed source-code control

So what did we do?

The “upstream first” rule

Distributed source-code control
(...actually, any source-code control...)

So what did we do?

The “upstream first” rule

Distributed source-code control
(...actually, any source-code control...)

The “new” release model

So what did those changes do for us?

Recent releases

Version Date Days Devs Changesets
4.7 Jul 17 70 1,582 12,283
4.8 Oct 2 70 1,597 13,382
4.9 Dec 11 70 1,729 16,216
4.10 Feb 19 70 1,672 13,029
4.11 Apr 30 70 1,741 12,724
4.12 Jul 2 63 1,821 14,570
4.13 Sep 3 63 1,681 13,006

Recent releases

Version Date Days Devs Changesets
4.7 Jul 17 70 1,582 12,283
4.8 Oct 2 70 1,597 13,382
4.9 Dec 11 70 1,729 16,216
4.10 Feb 19 70 1,672 13,029
4.11 Apr 30 70 1,741 12,724
4.12 Jul 2 63 1,821 14,570
4.13 Sep 3 63 1,681 13,006
→82,925 changes from 4,319 devs since 4.7

The Linux kernel is everywhere

We would appear to be on a roll...

We would appear to be on a roll...

So why am I worried?

“Roads and bridges”

Nadia Eghbal

We are not paying
sufficient attention to
the needs of our
maintainers

Unpaid maintenance?

Maint. support v4.7..
21% Red Hat
10% Intel
 9% Linux Foundation
 8% Linaro
 7% Google
 4% Samsung
 4% —
 3% IBM
 2% SUSE

Unpaid maintenance?

Maint. support v4.7..
21% Red Hat
10% Intel
 9% Linux Foundation
 8% Linaro
 7% Google
 4% Samsung
 4% —
 3% IBM
 2% SUSE

Core maint support
30% Google
24% Red Hat
 8% Facebook
 7% SUSE
 5% Intel
 4% consultants
 4% Huawei
 4% Linutronix
 3% Oracle

Work nobody will pay for

Much core-kernel work
Documentation

I think the problem is a lack of paid tech writers
working on Linux. Who would pay them? This lack of
documentation makes learning and discovering new
Linux features difficult.
— Brendan Gregg, September 2017

Work nobody will pay for

Much core-kernel work
Documentation
Configuration system
Debloating
Security
...

Security worries

We have no “security officer”
 no security training
 no security documentation

The year in CVE numbers

CVE-2016-0723 CVE-2016-0728 CVE-2016-0758 CVE-2016-0774 CVE-2016-0821 CVE-2016-0823
CVE-2016-1237 CVE-2016-1575 CVE-2016-1576 CVE-2016-1583 CVE-2016-2053 CVE-2016-2059
CVE-2016-2061 CVE-2016-2062 CVE-2016-2063 CVE-2016-2064 CVE-2016-2065 CVE-2016-2066
CVE-2016-2067 CVE-2016-2068 CVE-2016-2069 CVE-2016-2070 CVE-2016-2085 CVE-2016-2117
CVE-2016-2143 CVE-2016-2184 CVE-2016-2185 CVE-2016-2186 CVE-2016-2187 CVE-2016-2188
CVE-2016-2383 CVE-2016-2384 CVE-2016-2543 CVE-2016-2544 CVE-2016-2545 CVE-2016-2546
CVE-2016-2547 CVE-2016-2548 CVE-2016-2549 CVE-2016-2550 CVE-2016-2782 CVE-2016-2847
CVE-2016-2853 CVE-2016-2854 CVE-2016-3070 CVE-2016-3134 CVE-2016-3135 CVE-2016-3136
CVE-2016-3137 CVE-2016-3138 CVE-2016-3139 CVE-2016-3140 CVE-2016-3156 CVE-2016-3157
CVE-2016-3672 CVE-2016-3689 CVE-2016-3707 CVE-2016-3713 CVE-2016-3841 CVE-2016-3951
CVE-2016-3955 CVE-2016-3961 CVE-2016-4440 CVE-2016-4470 CVE-2016-4482 CVE-2016-4485
CVE-2016-4486 CVE-2016-4557 CVE-2016-4558 CVE-2016-4565 CVE-2016-4568 CVE-2016-4569
CVE-2016-4578 CVE-2016-4580 CVE-2016-4581 CVE-2016-4794 CVE-2016-4805 CVE-2016-4913
CVE-2016-4951 CVE-2016-4997 CVE-2016-4998 CVE-2016-5243 CVE-2016-5244 CVE-2016-5340
CVE-2016-5342 CVE-2016-5344 CVE-2016-5400 CVE-2016-5412 CVE-2016-5696 CVE-2016-5728
CVE-2016-5828 CVE-2016-5829 CVE-2016-6130 CVE-2016-6136 CVE-2016-6156 CVE-2016-6162
CVE-2016-6187 CVE-2016-6197 CVE-2016-6198 CVE-2016-6480 [...]

2007

2007

2007

2007

CVE-
2017-
6074

Security shows a big hole in our maintainer model

Unmaintained code

There are some dark
corners in the kernel
tree.

Unmaintained code

There are some dark
corners in the kernel
tree.

Some other concerns

Review bandwidth

The big problem is this, we really only have a very
small group of people reviewing code in the kernel
community.
— Greg Kroah-Hartman

Review bandwidth

The big problem is this, we really only have a very
small group of people reviewing code in the kernel
community.
— Greg Kroah-Hartman, 2006

Review bandwidth

The big problem is this, we really only have a very
small group of people reviewing code in the kernel
community.
— Greg Kroah-Hartman, 2006

I am worried that the number of patches posted to
linux-mm grows over time while the number of
reviewers doesn’t scale up with that trend.
— Michal Hocko, 2017

Wolfram Sang: the
number of reviewers is
not scaling with the
number of contributors.

As a consequence

Maintainers burn out and fall behind

As a consequence

Maintainers burn out and fall behind

Unreviewed code gets in

As a consequence

Maintainers burn out and fall behind

Unreviewed code gets in

Long-term API problems

Review bandwidth is a problem for all projects

We work hard to encourage contributions

Perhaps we should do more to promote
code-review skills?

Out-of-tree code

Out-of-tree code consequences

Bugs and security issues
Inability to run mainline kernels
Maintainer stress
Maintainers pulled out of the community

My phone

The 3.10 kernel

Was released in June 2013
3.10.73 update was March 2015

Is 300,000 patches behind the mainline

More recently

2.2.0: 1999-01-16
2.4.0: 2001-01-04
2.6.0: 2003-12-17

The fun of those days
Massive backporting of 2.6 patches to 2.4
Vendor Frankenstein kernels
Lots of out-of-tree code shipped
Painful upgrades

How much more can we grow with this much
energy being directed away from our community?

What is maintainership?

How does one become a maintainer?

Maintainers tend to get to be maintainers because
they were good at something else, and not good
enough at hiding from the "maintainer" role. There is a
paradox here as a maintainer must be good at saying
"No", but if they were they might never have agreed to
become a maintainer.
— Neil Brown

How does one stop?

I’m trying to appear to be an incompetent maintainer
so that someone will offer to take over. It isn’t working
yet.
— Neil Brown

How does one stop?

I’m trying to appear to be an incompetent maintainer
so that someone will offer to take over. It isn’t working
yet.
— Neil Brown

I have decided to fall back on the mechanism by which
I ended up being maintainer in the first place. I will
create a vacuum and hope somebody fills it.
— Neil Brown

What is a maintainer’s authority?

You should always be able
to handle other people
changing files in your area
at any point in time. Kernel
maintainership is not “no
one else can ever touch
this!” type of development.
— Greg Kroah-Hartman

What is a maintainer’s authority?

You should always be able
to handle other people
changing files in your area
at any point in time. Kernel
maintainership is not “no
one else can ever touch
this!” type of development.
— Greg Kroah-Hartman

It is *my* prerogative to say
no to anything in arch/arm,
and I really don’t have to
give reasons for it if I
choose to.
— Russell King

“A bunch of little fiefdoms”

What are a maintainer’s responsibilities?

I can’t take patches without a changelog text, and
neither should any other maintainer.
— Greg Kroah-Hartman

What are a maintainer’s responsibilities?

I can’t take patches without a changelog text, and
neither should any other maintainer.
— Greg Kroah-Hartman

(536 no-changelog patches were merged for 4.10)

What are a maintainer’s responsibilities?

Review the code
Mentor developers
Respond quickly to patches
Check code provenance
Respond to regressions
Route fixes to -stable
Represent the subsystem to the world
Resist company pressure
Keep Linus happy
[...]

Patch management

Not dropping patches through the cracks
Proper Git repository practices
Informing contributors about actions
Avoiding / handling conflicts
...

Speaking of patch management

Kids these days do
things differently.

Photo: Lars Plougmann

Our maintainers are getting older

Back to the point

We don’t define the maintainer role well
We don’t document how to fill it
We don’t train future maintainers

Back to the point

We don’t define the maintainer role well
We don’t document how to fill it
We don’t train future maintainers

How much more can we scale in this mode?

So what can we do?

Recognize maintainership as an activity needing
support

Document what it means to be a maintainer

Create training and mentoring for new maintainers

Teach code-review skills and encourage their use

Move away from the single-maintainer model
(explore group maintainership)

Think about our next generation of tools

Pay more attention to our unmaintained dark
corners

Don’t assume our process-scalability problems
are behind us

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

