The kernel’s limits to growth

(LPC/OSS 2017)

Jonathan Corbet
LWN.net
corbet@Iwn.net

Quite frankly, this particular discussion (and others before it)
has just made me irritable, and is ADDING pressure. Instead,
I'd suggest that if you have a complaint about how | handle
patches, you think about what | end up having to deal with for
five minutes.

Go away, people. Or at least don't Cc me any more. I'm not
Interested, I'm taking a vacation, and | don't want to hear about
it any more. In short, get the hell out of my mailbox.

— Linus Torvalds

Quite frankly, this particular discussion (and others before it)
has just made me irritable, and is ADDING pressure. Instead,
I'd suggest that if you have a complaint about how | handle
patches, you think about what | end up having to deal with for
five minutes.

Go away, people. Or at least don't Cc me any more. I'm not
Interested, I'm taking a vacation, and | don't want to hear about
it any more. In short, get the hell out of my mailbox.

— Linus Torvalds, September 1998

Development process scalability

2.2.0:
2.4.0:
2.6.0:

More recently

1999-01-16
2001-01-04
2003-12-17

More recently

2.2.0: 1999-01-16
2.4.0: 2001-01-04
2.6.0: 2003-12-17

The fun of those days
Massive backporting of 2.6 patches to 2.4
Vendor Frankenstein kernels
Lots of out-of-tree code shipped
Painful upgrades

So what did we do?

The “upstream first” rule

So what did we do?

The “upstream first” rule

Distributed source-code control

So what did we do?

The “upstream first” rule

Distributed source-code control
(...actually, any source-code control...)

So what did we do?

The “upstream first” rule

Distributed source-code control
(...actually, any source-code control...)

The “new” release model

Developer
Developer
Developer
Developer

Developer —
Developer
Developer @

Developer

Developer S
Maintainer

Developer

Developer

Developer @ @
'

So what did those changes do for us?

Recent releases

<

ersion Date Days Devs Changesets
Jull7 70 1,582 12,283
Oct2 70 1,597 13,382
Dec1l 70 1,729 16,216

0 Feb19 70 1,672 13,029

1 Apr30 /0 1,741 12,724

2 Jul 2 63 1,821 14,570

3 Sep3 63 1,681 13,006

B AD DA
PR RO

L 2

<

ersion

e S

A
.8
9
A1
A1
A1

4.13

- 82,925 changes from 4,319 devs since 4.7

Recent releases

Date
Jul 17
Oct 2
Dec 11
Feb 19
Apr 30
Jul 2
Sep 3

Days

70
70
70
70
70
63
63

Devs
1,582
1,597
1,729
1,672
1,741
1,821
1,681

Changesets

12,283
13,382
16,216
13,029
12,724
14,570
13,006

Developers contributing to each release
2000

Total
First-time

1500

1000

500

The Linux kernel Is everywhere

We would appear to be on a roll...

We would appear to be on a roll...

So why am | worried?

Developer
Developer
Developer
Developer

Developer —
Developer
Developer @

Developer

Developer S
Maintainer

Developer

Developer

Developer @ @
'

Developer
Developer
Developer

Developer
Developer
Developer

Developer

Developer
Developer
Developer

Developer

Developer

Maintainer

= n

Developer

Developer
Developer — |

Developer
Developer K

Developer —

Developer
Developer

Developer ;
Developer \

Developer — |

Maintainer

Maintainer

Maintainer

Maintainer

Maintainer

Maintainer

Maintainer

“Roads and bridges”
Nadia Eghbal

We are not paying
sufficient attention to
the needs of our
maintainers

B

=
a

L

Unpaid maintenance?

Maint. support v4.7/..
21% Red Hat
10% Intel
9% Linux Foundation
8% Linaro
7% Google
4% Samsung
4% —
3% IBM
2% SUSE

P

=
a

L

Unpaid maintenance?

Maint. support v4.7/..
21% Red Hat
10% Intel
9% Linux Foundation
8% Linaro
7% Google
4% Samsung
4% —
3% IBM
2% SUSE

Core maint support
30% Google
24% Red Hat

8% Facebook
7% SUSE

5% Intel

4% consultants
4% Huawel
4% Linutronix
3% Oracle

Work nobody will pay for

Much core-kernel work
Documentation

| think the problem Is a lack of paid tech writers
working on Linux. Who would pay them? This lack of
documentation makes learning and discovering new
Linux features difficult.

— Brendan Gregg, September 2017

Work nobody will pay for

Much core-kernel work
Documentation
Configuration system
Debloating

Security

Security worries

We have no “security officer”
no security training
no security documentation

The year in CVE numbers

CVE-2016-07/23 CVE-2016-0728 CVE-2016-0758 CVE-2016-0/74 CVE-2016-0821 CVE-2016-0823
CVE-2016-1237 CVE-2016-157/5 CVE-2016-1576 CVE-2016-1583 CVE-2016-2053 CVE-2016-2059
CVE-2016-2061 CVE-2016-2062 CVE-2016-2063 CVE-2016-2064 CVE-2016-2065 CVE-2016-2066
CVE-2016-2067 CVE-2016-2068 CVE-2016-2069 CVE-2016-2070 CVE-2016-2085 CVE-2016-2117
CVE-2016-2143 CVE-2016-2184 CVE-2016-2185 CVE-2016-2186 CVE-2016-2187 CVE-2016-2188
CVE-2016-2383 CVE-2016-2384 CVE-2016-2543 CVE-2016-2544 CVE-2016-2545 CVE-2016-2546
CVE-2016-2547 CVE-2016-2548 CVE-2016-2549 CVE-2016-2550 CVE-2016-27/82 CVE-2016-2847
CVE-2016-2853 CVE-2016-2854 CVE-2016-3070 CVE-2016-3134 CVE-2016-3135 CVE-2016-3136
CVE-2016-3137 CVE-2016-3138 CVE-2016-3139 CVE-2016-3140 CVE-2016-3156 CVE-2016-3157
CVE-2016-3672 CVE-2016-3689 CVE-2016-3707 CVE-2016-3713 CVE-2016-3841 CVE-2016-3951
CVE-2016-3955 CVE-2016-3961 CVE-2016-4440 CVE-2016-4470 CVE-2016-4482 CVE-2016-4485
CVE-2016-4486 CVE-2016-4557 CVE-2016-4558 CVE-2016-4565 CVE-2016-4568 CVE-2016-4569
CVE-2016-4578 CVE-2016-4580 CVE-2016-4581 CVE-2016-47/94 CVE-2016-4805 CVE-2016-4913
CVE-2016-4951 CVE-2016-4997 CVE-2016-4998 CVE-2016-5243 CVE-2016-5244 CVE-2016-5340
CVE-2016-5342 CVE-2016-5344 CVE-2016-5400 CVE-2016-5412 CVE-2016-5696 CVE-2016-5728
CVE-2016-5828 CVE-2016-5829 CVE-2016-6130 CVE-2016-6136 CVE-2016-6156 CVE-2016-6162
CVE-2016-6187 CVE-2016-6197 CVE-2016-6198 CVE-2016-6480 |[...]

v

e

-

=

L

diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c

index c701f6a..5cl6e24 100644

--- a/net/ipv4/tcp_input.c

+++ b/net/ipv4/tcp_input.c

@@ -4420,9 +4420,11 @@ int tcp rcv state process(struct sock *sk, struct sk buff *skb,
* But, this leaves one open to an easy denial of

* service attack, and SYN cookies can't defend
* against this problem. So, we drop the data
- * 1in the interest of security over speed.
+ * in the interest of security over speed unless
+ * it's still in use.
*/
- goto discard;
+ kfree skb(skb);
+ return 0;

diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
index c701f6a..5cl6e24 100644
--- a/net/ipv4/tcp_input.c
+++ b/net/ipv4/tcp_input.c 2007
@@ -4420,9 +4420,11 @@ int tcp rcv state process(struct sock *sk, struct sk buff *skb,
* But, this leaves one open to an easy denial of

* service attack, and SYN cookies can't defend
* against this problem. So, we drop the data
- * 1in the interest of security over speed.
+ * in the interest of security over speed unless
+ * it's still in use.
*/
- goto discard;
+ kfree skb(skb);
+ return 0;

diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c

index c701f6a..5cl6e24 100644

--- a/net/ipv4/tcp_input.c

+++ b/net/ipv4/tcp_input.c

@@ -4420,9 +4420,11 @@ int tcp rcv state process(struct sock *sk, struct sk buff *skb, 2007
* But, this leaves one open to an easy denial of

* service attack, and SYN cookies can't defend
* against this problem. So, we drop the data
- * 1in the interest of security over speed.
+ * in the interest of security over speed unless
+ * it's still in use.
*/
- goto discard;
+ kfree skb(skb);
+ return 0;

}

diff --git a/net/dccp/input.c b/net/dccp/input.c

index ba34718. .8fedc2d 100644

--- a/net/dccp/input.c

+++ b/net/dccp/input.c

@@ -606,7 +606,8 @@ int dccp rcv state process(struct sock *sk, struct sk buff *skb,
if (inet csk(sk)->icsk af ops->conn_ request(sk,

skb) < 0)
return 1;
- goto discard;
+ consume skb(skb); @
+ return 0; o
} S .‘_L .‘_
if (dh-=dccph type == DCCP_PKT RESET) ;)-‘(/

goto discard;

diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c
index c701f6a..5cl6e24 100644

--- a/net/ipv4/tcp_input.c
+++ b/net/ipv4/tcp_input.c

@@ -4420,9 +4420,11 @@ 1nt@cv state _process (»truct sock *sk, struct sk buff *skb, 2007

* Bu ity e open to an easy denial of
* service atplack, and SYN cookies can't defend
* against t problem. So, we drop the data
- * in the intqrest of security over speed.
+ * in the intgrest of security over speed unless
+ * it's still fin use.
*/
- goto discard;
+ kfree skb(skb)y;
+ return 0;
}

diff --git a/net/dccp/input.c b/net/dccp/input.c
index ba34718. .8fedc2d 100644

--- a/net/dccp/input.c
+++ b/net/dccp/input.c

@@ -606,7 +606,8 @@ 1nt(dccp rcv _state process)Pstruct sock *sk, struct sk buff *skb,
i Sk af ops->conn_request(sk,

skb) < 0)
return 1;
- goto discard;
+ consume skb(skb) ; @
+ return 0; : Ni
} L™
if (dh-=dccph type == DCCP_PKT RESET) ZMQ-JL;:

goto discard;

diff --git a/net/ipv4/tcp_input.c b/net/ipv4/tcp_input.c

index c701f6a..5cl6e24 100644

--- a/net/ipv4/tcp_input.c

+++ b/net/ipv4/tcp_input.c 2007

@@ -4420,9 +4420,11 @@ 1nt@cv state _process (»truct sock *sk, struct sk buff *skb,
* Bu ity e open to an easy denial of

* service atplack, and SYN cookies can't defend
* against t problem. So, we drop the data
- * in the intqrest of security over speed.
*
*

+ in the intgqrest of security over speed unless
+ it's still fin use.
*/
- goto discard;
+ kfree skb(skb)y;
+ return 0;

}

diff --git a/net/dccp/input.c b/net/dccp/input.c
index ba34718. .8fedc2d 100644

--- a/net/dccp/input.c CVE'

+++ b/net/dccp/input.c 2017
@@ -606,7 +606,8 @@ 1n‘t(dccp rcv _state process)Pstruct sock *sk, struct sk buff *skb, -
i = Sk af ops->conn_request(sk,
skb) < 0) 6074
return 1;
- goto discard;
+ consume skb(skb) ; @
- return 0; 2
} SNl
if (dh-=dccph type == DCCP_PKT RESET) ‘\)_(;

goto discard;

Security shows a big hole in our maintainer model

Unmaintained code

There are some dark
corners in the kernel
tree.

Unmaintained code

There are some dark
corners in the kernel
tree.

Some other concerns

Review bandwidth

The big problem is this, we really only have a very

small group of people reviewing code in the kernel
community.

— Greg Kroah-Hartman

Review bandwidth

The big problem is this, we really only have a very
small group of people reviewing code in the kernel
community.

— Greg Kroah-Hartman, 2006

Review bandwidth

The big problem is this, we really only have a very
small group of people reviewing code in the kernel
community.

— Greg Kroah-Hartman, 2006

I"am worried that the number of patches posted 1o

linux-mm grows over time while the number of
reviewers doesn’t scale up with that trend.
— Michal Hocko, 2017

Wolfram Sang: the
number of reviewers Is
not scaling with the
number of contributors.

AS a consequence

Maintainers burn out and fall behind

AS a consequence

Maintainers burn out and fall behind

Unreviewed code gets In

AS a consequence

Maintainers burn out and fall behind
Unreviewed code gets In

Long-term API problems

Review bandwidth Is a problem for all projects

We work hard to encourage contributions

Perhaps we should do more to promote
code-review skills?

Out-of-tree code

& Mobile SoC code out-of-tree

Company

LG
Motorola
Samsung
Samsung
Sony
Sony
Acer
Asus

Huawei

Phone

G3

Moto X
Galaxy 4
Galaxy S5
Xperia Z2
Xperia C
Liquid E2
Zenfone 6

Ascend P7

SOC

Msm
Msm
Exynos
Msm
Msm
Mediatek
Mediatek
Atom

Hisilicon

Insertions

26 M
1.8 M
1.1 M
3.1 M
1.8 M
1.9M
1.4 M
2.2M
2.7M

Out-of-tree code consequences

Bugs and security issues

Inablility to run mainline kernels
Maintainer stress

Maintainers pulled out of the community

My phone

Q 30 W4 @ 12:30

Phone status :

Regulatory labels

Send feedback about this device

Model
Nexus 5X

Android version
/P2

Android security patch level
August 5,2017

Baseband version
M8994F-2.6.37.2.21

Kernel version

3.10.73-gd79f9df7e45e
android-build@wphl9.ho

p.google.com #1

Build number
N2G48C

The 3.10 kernel

Was released in June 2013
3.10.73 update was March 2015

Is 300,000 patches behind the mainline

More recently

2.2.0: 1999-01-16
2.4.0: 2001-01-04
2.6.0: 2003-12-17

The fun of those days
Massive backporting of 2.6 patches to 2.4
Vendor Frankenstein kernels
Lots of out-of-tree code shipped
Painful upgrades

How much more can we grow with this much
energy being directed away from our community?

What is maintainership?

How does one become a maintainer?

Maintainers tend to get to be maintainers because
they were good at something else, and not good
enough at hiding from the "maintainer"” role. There is a
paradox here as a maintainer must be %ood at saying

"No", but if they were they might never have agreed to
become a maintainer.

— Neil Brown

How does one stop?

I'm trying to appear to be an incompetent maintainer
so that someone will offer to take over. It isn’t working
yet.

— Nell Brown

How does one stop?

I'm trying to appear to be an incompetent maintainer
so that someone will offer to take over. It isn’t working

yet.

— Nell Brown

| have decided to fall back on the mechanism by which

| ended up being maintainer in the first place. | will
create a vacuum and hope somebody fills it.

— Neil Brown

4 -_L‘NN.

What Is a maintainer’s authority?

You should always be able
to handle other people
changing files in your area
at any point in time. Kernel
maintainership is not “no
one else can ever touch
this!” type of development.
— Greg Kroah-Hartman

What Is a maintainer’s authority?

You should always be able
to handle other people
changing files in your area
at any point in time. Kernel
maintainership is not “no
one else can ever touch
this!” type of development.
— Greg Kroah-Hartman

It Is *my* prerogative to say
no to anything in arch/arm,
and | really don’t have to
give reasons for it if |
choose to.

— Russell King

“A bunch of little fiefdoms”

What are a maintainer’s responsibilities?

| can't ta
neither s
— Greg

Ke patches without a changelog text, and
nould any other maintainer.

Kroah-Hartman

What are a maintainer’s responsibilities?

| can’t take patches without a changelog text, and
neither should any other maintainer.
— Greg Kroah-Hartman

(536 no-changelog patches were merged for 4.10)

What are a maintainer’s responsibilities?

Review the code
Mentor developers

Respond quickly to patches

Check code provenance

Respond to regressions

Route fixes to -stable

Represent the subsystem to the world
Resist company pressure

Keep Linus happy

N

Patch management

Not dropping patches through the cracks
Proper Git repository practices

Informing contributors about actions
Avoiding / handling conflicts

.

News from the source

Content

Weekly Edition
Archives

Search

Kernel

Security
Distributions
Events calendar
Unread comments

LWN FAQ

Write for us

Edition
'Return to the Front

page

User: Password: Log in | Subscribe | Register

Why kernel development still uses email

By Jonathan Corbet In a world full of fancy development tools and sites, the kernel project's dependence on email and mailing lists can seem
October 1, 2016 quaintly dated, if not positively prehistoric. But, as Greg Kroah-Hartman pointed out in a Kernel Recipes talk titled "Patches

carved into stone tablets”, there are some good reasons for the kernel community's choices. Rather than being a holdover
Kerel Recipes from an older era, email remains the best way to manage a project as large as the kernel.

In short, Greg said, kernel developers still use email because it is faster than any of the alternatives. Over the course of the last year, the project
accepted about eight changes per hour — every hour — from over 4,000 developers sponsored by over 400 companies. It must be doing something
right. The list of maintainers who accepted at least one patch per day contains 75 entries; at the top of the list, Greg himself accepted 9,781 patches
over the year. Given that he accepts maybe one third of the patches sent his way, it is clear that the patch posting rate is much higher than that.

Finding tools that can manage that sort of patch rate is hard. A poor craftsman famously complains about his tools, Greg said, but a good craftsman
knows how to choose excellent tools.

So which tools are available for development work? Greg started by looking at GitHub, which, he said, has a number of advantages. It is "very very
pretty” and is easy to use for small projects thanks to its simple interface. GitHub offers free hosting and unlimited bandwidth, and can (for a fee) be run
on a company's own infrastructure. It makes life easy for the authors of drive-by patches; Greg uses it for the usbutils project and gets an occasional
patch that way.

On the other hand, GitHub does not scale to larger projects. He pointed at the Kubernetes project, which has over 4,000 open issues and 511 open pull
requests. The system, he said, does not work well for large numbers of reviewers. It has a reasonable mechanism for
discussion threads attached to pull requests — GitHub has duplicated email for that feature, he said — but only the
people who are actually assigned to a pull request can see that thread. GitHub also requires online access, but there
are a lot of kernel developers who, for whatever reason, do not have good access to the net while they are working. In '
general, it is getting better, but projects like Kubernetes are realizing that they need to find something better suited to
their scale; it would never work for the kernel.

Moving on to Gerrit, Greg started to list its good points, but stopped short, saying he didn't know any. Actually, there was

one: project managers love it, since it gives them the feeling that they know what is going on within the project. He noted

that Google, which promotes Gerrit for use with the Android project, does not use it for any of its internal projects. Even

with Android, Gerrit is not really needed; Greg pointed out that, in the complicated flow chart showing how to get a patch

into Android, Gerrit has a small and replaceable role. <y

Gerrit, he said, makes patch submission quite hard; Repo helps a bit in that regard, but not many projects use it. Gerrit
can he serinted but few neonle do that An audience member inmned in to sav that 1sinn Gerrit was like doinn one's

3 LWN
e .het

v
News from the source

Content

Weekly Edition
Archives

Search

Kernel

Security
Distributions
Events calendar
Unread comments

LWN FAQ

Write for us

Edition

Return to the Front
page

User: Password: Log in | Subscribe

Why kernel development still uses email

By Jonathan Corbet
October 1, 2016

Kernel Recipes

In short, Greg said, kernel developers still use email because it is faster than any of the
accepted about eight changes per hour — every hour — from over 4,000 developers sg
right. The list of maintainers who accepted at least one patch per day contains 75 entri¢
over the year. Given that he accepts maybe one third of the patches sent his way, it is ¢

Finding tools that can manage that sort of patch rate is hard. A poor craftsman famousl
knows how to choose excellent tools.

So which tools are available for development work? Greg started by looking at GitHub,
pretty” and is easy to use for small projects thanks to its simple interface. GitHub offers
on a company's own infrastructure. It makes life easy for the authors of drive-by patche
patch that way.

On the other hand, GitHub does not scale to larger projects. He pointed at the Kuberne!
requests. The system, he said, does not work well for large numbers of reviewers. It ha
discussion threads attached to pull requests — GitHub has duplicated email for that fee
people who are actually assigned to a pull request can see that thread. GitHub also req
are a lot of kernel developers who, for whatever reason, do not have good access to th
general, it is getting better, but projects like Kubernetes are realizing that they need to f
their scale; it would never work for the kernel.

Moving on to Gerrit, Greg started to list its good points, but stopped short, saying he dic
one: project managers love it, since it gives them the feeling that they know what is goi
that Google, which promotes Gerrit for use with the Android project, does not use it for i
with Android, Gerrit is not really needed; Greg pointed out that, in the complicated flow
into Android, Gerrit has a small and replaceable role.

Gerrit, he said, makes patch submission quite hard; Repo helps a bit in that regard, but
can he scrinted but few neonle do that An audience memhber inmned in to sav that usi

In a world full of fancy development tools and sites, the kernel project's dependence on email and mailing lists can seem
quaintly dated, if not positively prehistoric. But, as Greg Kroah-Hartman pointed out in a Kernel Recipes talk titled "Patches
carved into stone tablets”, there are some good reasons for the kernel community's choices. Rather than being a holdover
from an older era, email remains the best way to manage a proiect as larae as the kernel.

stuff by danvet about archive tags

Why Github can't host the Linux
Kernel Community

August 8, 2017 - danvet

A while back at the awesome | chatted with a few great fellow maintainers about how
to scale really big open source projects, and how github forces projects into a certain way of
scaling. The linux kernel has an entirely different model, which maintainers hosting their projects on
github don’t understand, and | think it's worth explaining why and how it works, and how it's

different.

Another motivation to finally get around to typing this all up is the on my

, Where the top comment boils down to “... why don’t these dinosaurs use modern
dev tooling?". A few top kernel maintainers vigorously defend mailing lists and patch submissions
over something like github pull requests, but at least some folks from the graphics subsystem would
love more modern tooling which would be much easier to script. The problem is that github doesn't
support the way the linux kernel scales out to a huge number of contributors, and therefore we can’t
simply move, not even just a few subsystems. And this isn't about just hosting the git data, that part
obviously works, but how pull requests, issues and forks work on github.

Scaling, the Github Way

T T R SO [[N SN (U [N [SR (T [N (.

Speaking of patch management

Kids these days do
things differently.

i N, Lo e e ; : v L
hoto: Lars Plougmann O %20

-
D
=
@)
o)
-
=
D
o)
D
-
M
(7
-
D
f=
©
e
=
M
=
-
-
®

We C
We C

We C

Back to the point

on’t define the maintainer role well
on’t document how to fill it
on’t train future maintainers

Back to the point

We don’t define the maintainer role well
We don’t document how to fill it
We don’t train future maintainers

How much more can we scale in this mode?

So what can we do?

Recognize maintainership as an activity needing
support

Document what it means to be a maintainer

Create training and mentoring for new maintainers

Teach code-review skills and encourage their use

Move away from the single-maintainer model
(explore group maintainership)

Think about our next generation of tools

Pay more attention to our unmaintained dark
corners

Don’t assume our process-scalability problems
are behind us

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

