
Jean-Pierre	Lozi

with :
Gilles	Muller,	Julia	Lawall

Nicolas	Palix

Baptiste	Lepers,	Willy	Zwaenpoel

Université	Nice	Sophia-Antipolis

UPMC/INRIA/LIP6	Paris
Université	Grenoble	Alpes
EPFL

Jean-Pierre	Lozi

with :
Gilles	Muller,	Julia	Lawall

Nicolas	Palix

Baptiste	Lepers,	Willy	Zwaenpoel

Université	Nice	Sophia-Antipolis

UPMC/INRIA/LIP6	Paris
Université	Grenoble	Alpes
EPFL

Context:	cluster	computing

Jean-Pierre	Lozi

- Focus	on	cluster	computing

Context:	cluster	computing

Jean-Pierre	Lozi

- Focus	on	cluster	computing

- Multicore	servers	with	dozens	of	cores
- High	cost	of	infrastructure,	high	energy	consumption

Context:	cluster	computing

Jean-Pierre	Lozi

- Focus	on	cluster	computing

- Multicore	servers	with	dozens	of	cores
- High	cost	of	infrastructure,	high	energy	consumption

- Linux-based	software	stack
- Low	(license)	cost,	yet	high	reliability

Context:	cluster	computing

Jean-Pierre	Lozi

- Focus	on	cluster	computing

- Multicore	servers	with	dozens	of	cores
- High	cost	of	infrastructure,	high	energy	consumption

- Linux-based	software	stack
- Low	(license)	cost,	yet	high	reliability

- Challenge:	don’t	waste	cycles!
- Reduces	infrastructure	and	energy	costs
- Improves	bandwidth	and	latency

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- The	Linux	scheduler	has	performance	bugs!

- Showed	this	last	year	@EuroSys
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- The	Linux	scheduler	has	performance	bugs!

- Showed	this	last	year	@EuroSys
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »

- Work-conservation	invariant	not	maintained:
- Idle	cores	while	several	threads	running	on	some	cores
- Situation	lasts	for	a	long	time	(several	seconds,	sometimes	forever)

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- The	Linux	scheduler	has	performance	bugs!

- Showed	this	last	year	@EuroSys
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »

- Work-conservation	invariant	not	maintained:
- Idle	cores	while	several	threads	running	on	some	cores
- Situation	lasts	for	a	long	time	(several	seconds,	sometimes	forever)

- Consequences:
- Wasted	energy,	infrastructure	resources,	lower	bandwidth,	higher	latency...
- Lack	of	predictability:	harder	to	scale-out!

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bug	1:	problem	with	the	way	load	is	calculated

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bug	1:	problem	with	the	way	load	is	calculated

- Idea:	the	scheduler	thinks	the	load	is	balanced	if	nodes	have	same	average	load

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bug	1:	problem	with	the	way	load	is	calculated

- Idea:	the	scheduler	thinks	the	load	is	balanced	if	nodes	have	same	average	load
- Not	necessarily	the	case!

Load	2	=	avg(many	make threads	with	
low	load)

Load	1	=	avg(R thread	with	high	load	+	a
few	make threads	with	low	load)

Load	1	=	Load	2:	the	scheduler	thinks	the	load	is	balanced!

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bugs	2	&	3:	problem	with	the	way	the	hierarchy	is	built

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bugs	2	&	3:	problem	with	the	way	the	hierarchy	is	built

- E.g.,	idea	of	bug	2:	at	the	last	level	(connected	nodes),	one	node	in	both	groups

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bugs	2	&	3:	problem	with	the	way	the	hierarchy	is	built

- E.g.,	idea	of	bug	2:	at	the	last	level	(connected	nodes),	one	node	in	both	groups
- Threads	on	that	core	never	balanced	:	load	of	both	groups	equal

Machine

Directly	connected	nodes	0 Directly	connected	nodes	1

...

Node	4 Node	3 Node	2 Node	1 Node	0 Node	5 Node	6 Node	7

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bug	4:	problem	with	« smart »	wakeups

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bug	4:	problem	with	« smart »	wakeups

- Idea	of	bug	4:	periodic	load	balancing	global,	« smart »	wakeups	on	local	node

The	problem:	perf	bugs	in	scheduler

Jean-Pierre	Lozi

- Work-conservation	invariant	not	maintained:	four	bugs	described	in	the	paper
« The	Linux	Scheduler:	A	Decade	of	Wasted	Cores »
- Bug	4:	problem	with	« smart »	wakeups

- Idea	of	bug	4:	periodic	load	balancing	global,	« smart »	wakeups	on	local	node
- One	makes	mistakes	the	other	can’t	fix!

Analysis:	Linux	scheduler too complex!

Jean-Pierre	Lozi

- Linux	used	for	many	classes	of	applications
- Cloud	hosting,	database,	n-tier	services,	HPC...
- Interactive	applications

Analysis:	Linux	scheduler too complex!

Jean-Pierre	Lozi

- Linux	used	for	many	classes	of	applications
- Cloud	hosting,	database,	n-tier	services,	HPC...
- Interactive	applications

- Multicore	architectures	increasingly	diverse	and	complex!

Analysis:	Linux	scheduler too complex!

Jean-Pierre	Lozi

- Linux	used	for	many	classes	of	applications
- Cloud	hosting,	database,	n-tier	services,	HPC...
- Interactive	applications

- Multicore	architectures	increasingly	diverse	and	complex!

- Result:	a	very	complex	monolithic	scheduler,	supposed	to	work	in	all	situations!
- Many	heuristics	interact	in	complex,	unpredictable	ways
- Some	features	greatly	complexify,	e.g.,	load	balancing	(tasksets,	cgroups/autogroups...)

Analysis:	Linux	scheduler too complex!

Jean-Pierre	Lozi

- Linux	used	for	many	classes	of	applications
- Cloud	hosting,	database,	n-tier	services,	HPC...
- Interactive	applications

- Multicore	architectures	increasingly	diverse	and	complex!

- Result:	a	very	complex	monolithic	scheduler,	supposed	to	work	in	all	situations!
- Many	heuristics	interact	in	complex,	unpredictable	ways
- Some	features	greatly	complexify,	e.g.,	load	balancing	(tasksets,	cgroups/autogroups...)

- Keeps	getting	worse!
- E.g.,	task_struct:	163	fields	in	Linux	3.0	(07/2011),	215	fields	in	4.6	(05/2016)
- 20,000	lines	of	C!

Analysis:	Linux	scheduler too complex!
For	instance,	fair.c:

#	lines	of	code #	functions #	variables

1K

2K

3K

4K

5K

6K

7K

8K

0

100

200

300

0

10

20

100

0
2009 2011 2013 2015 2017 2009 2011 2013 2015 2017 2009 2011 2013 2015 2017

Solution?

Jean-Pierre	Lozi

- A	solution:	prove	scheduler	implementation	correct?
- Way	too	much	code	for	current	technology
- We’d	need	to	detect	high-level	abstractions	from	low-level	C:	a	challenge!

Solution?

Jean-Pierre	Lozi

- A	solution:	prove	scheduler	implementation	correct?
- Way	too	much	code	for	current	technology
- We’d	need	to	detect	high-level	abstractions	from	low-level	C:	a	challenge!

- Supposing	we	managed	this	feat	through	hard	work...
- How	do	we	keep	up	with	updates?
- The	code	keeps	evolving	with	new	architectures	and	application	needs...

Solution?

Jean-Pierre	Lozi

- A	solution:	prove	scheduler	implementation	correct?
- Way	too	much	code	for	current	technology
- We’d	need	to	detect	high-level	abstractions	from	low-level	C:	a	challenge!

- Supposing	we	managed	this	feat	through	hard	work...
- How	do	we	keep	up	with	updates?
- The	code	keeps	evolving	with	new	architectures	and	application	needs...

- Not	doable!	We	need	another	approach...

Jean-Pierre	Lozi

- A	scheduler	is	tailored	to	a	(class	of)	parallel	application(s)
- Specific	thread	election	criterion
- E.g.,	more	preemption	for	more	interactive	applications...

- Specific	load	balancing	criterion
- EDF	for	real-time	apps,	locality-aware	balancing...

- Event-based	state	machine	(new,	block,	unblock,	terminate,	tick,	balance)...

Jean-Pierre	Lozi

- A	scheduler	is	tailored	to	a	(class	of)	parallel	application(s)
- Specific	thread	election	criterion
- E.g.,	more	preemption	for	more	interactive	applications...

- Specific	load	balancing	criterion
- EDF	for	real-time	apps,	locality-aware	balancing...

- Event-based	state	machine	(new,	block,	unblock,	terminate,	tick,	balance)...

- Machine	partitioned	into	sets	of	cores	that	run	≠	schedulers

Jean-Pierre	Lozi

- A	scheduler	is	tailored	to	a	(class	of)	parallel	application(s)
- Specific	thread	election	criterion
- E.g.,	more	preemption	for	more	interactive	applications...

- Specific	load	balancing	criterion
- EDF	for	real-time	apps,	locality-aware	balancing...

- Event-based	state	machine	(new,	block,	unblock,	terminate,	tick,	balance)...

- Machine	partitioned	into	sets	of	cores	that	run	≠	schedulers

- Scheduler	deployed	together	with	an	application	on	a	partition

Scientific	challenges

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	
by	an	application	developer	(not	a	Linux	kernel	expert)

Scientific	challenges

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	
by	an	application	developer	(not	a	Linux	kernel	expert)

2. Scheduling	policies	must	be	proven	safe	so	that	they	do	not	hang	or	
crash	the	kernel

Scientific	challenges

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	
by	an	application	developer	(not	a	Linux	kernel	expert)

2. Scheduling	policies	must	be	proven	safe	so	that	they	do	not	hang	or	
crash	the	kernel

3. Scheduling	policies	must	be	proven	free	of	the	recently	identified	
performance	bugs

Scientific	challenges

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	
by	an	application	developer	(not	a	Linux	kernel	expert)

2. Scheduling	policies	must	be	proven	safe	so	that	they	do	not	hang	or	
crash	the	kernel

3. Scheduling	policies	must	be	proven	free	of	the	recently	identified	
performance	bugs

4. Scheduling	policies	must	capture	the	diversity	of	modern	multicore	
architectures

Scientific	challenges

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	
by	an	application	developer	(not	a	Linux	kernel	expert)

2. Scheduling	policies	must	be	proven	safe	so	that	they	do	not	hang	or	
crash	the	kernel

3. Scheduling	policies	must	be	proven	free	of	the	recently	identified	
performance	bugs

4. Scheduling	policies	must	capture	the	diversity	of	modern	multicore	
architectures

5. The	approach	should	not	introduce	a	performance	penalty

Challenge	1:	ease of	implementation

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Challenge	1:	ease of	implementation

Jean-Pierre	Lozi

Problem:	kernel	development	is	(still)	a	nightmare,	error-prone!

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Challenge	1:	ease of	implementation

Jean-Pierre	Lozi

Problem:	kernel	development	is	(still)	a	nightmare,	error-prone!

-Low-level	C	code	⇒ little	help	from	the	compiler!

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Challenge	1:	ease of	implementation

Jean-Pierre	Lozi

Problem:	kernel	development	is	(still)	a	nightmare,	error-prone!

-Low-level	C	code	⇒ little	help	from	the	compiler!
-Likely	to	crash/hang	the	OS!
- Testing/debugging	time-consuming,	tedious!
- Not	all	stack	trace	info	easily	available...

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Challenge	1:	ease of	implementation

Jean-Pierre	Lozi

Problem:	kernel	development	is	(still)	a	nightmare,	error-prone!

-Low-level	C	code	⇒ little	help	from	the	compiler!
-Likely	to	crash/hang	the	OS!
- Testing/debugging	time-consuming,	tedious!
- Not	all	stack	trace	info	easily	available...

-No	clear	framework	for	writing	schedulers	⇒ unclear	interactions,	synchro.	issues!

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Challenge	1:	ease of	implementation

Jean-Pierre	Lozi

Problem:	kernel	development	is	(still)	a	nightmare,	error-prone!

-Low-level	C	code	⇒ little	help	from	the	compiler!
-Likely	to	crash/hang	the	OS!
- Testing/debugging	time-consuming,	tedious!
- Not	all	stack	trace	info	easily	available...

-No	clear	framework	for	writing	schedulers	⇒ unclear	interactions,	synchro.	issues!
-More	issues,	e.g.,	optimizations	hinder	code	maintenance
- Target-specific	implementation	of	mechanisms	⇒ policy	obfuscated!

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Challenge	1:	solution

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Solution:	capture	kernel	expertise	into	a	Domain-Specific	Language	(DSL)!

Challenge	1:	solution

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Solution:	capture	kernel	expertise	into	a	Domain-Specific	Language	(DSL)!

DSL:	A	programming	language	dedicated	to	a	family	of	
programs	that	offers	specific	abstractions	and	notations.	

Challenge	1:	solution

Jean-Pierre	Lozi

1. Implementing	scheduling	policies	must	be	simple	enough	to	be	doable	by	an	
application	developer	(not	a	Linux	kernel	expert)

Solution:	capture	kernel	expertise	into	a	Domain-Specific	Language	(DSL)!

-Trade	expressiveness	for	expertise/knowledge:
- Productivity: easier	and	safer	programming
- Robustness: (static)	verification	of	properties
- Performance: efficient	compilation

DSL:	A	programming	language	dedicated	to	a	family	of	
programs	that	offers	specific	abstractions	and	notations.	

Bossa

Jean-Pierre	Lozi

- Ten	years	ago:	Bossa

- Idea:	enrich	an	existing	kernel	with	a	scheduling-specific	event	interface
- Framework	and	rules	for	developing	a	scheduler

DSL policy

Compiled	policy
(kernel	module)

Existing	bossa-ified	
kernel

Bossa
compiler/verifierEvent

Interface

Bossa

Jean-Pierre	Lozi

- Ten	years	ago:	Bossa

- Idea:	enrich	an	existing	kernel	with	a	scheduling-specific	event	interface
- Framework	and	rules	for	developing	a	scheduler
- Used	for	teaching	scheduling

DSL policy

Compiled	policy
(kernel	module)

Existing	bossa-ified	
kernel

Bossa
compiler/verifierEvent

Interface

Bossa

Jean-Pierre	Lozi

- Ten	years	ago:	Bossa

- Idea:	enrich	an	existing	kernel	with	a	scheduling-specific	event	interface
- Framework	and	rules	for	developing	a	scheduler
- Used	for	teaching	scheduling
- Related	publications	[ASE	2003,	EW	2004,	HASE	2006]

DSL policy

Compiled	policy
(kernel	module)

Existing	bossa-ified	
kernel

Bossa
compiler/verifierEvent

Interface

Bossa

Jean-Pierre	Lozi

- Ten	years	ago:	Bossa

- Idea:	enrich	an	existing	kernel	with	a	scheduling-specific	event	interface
- Framework	and	rules	for	developing	a	scheduler
- Used	for	teaching	scheduling
- Related	publications	[ASE	2003,	EW	2004,	HASE	2006]
- Target:	single-core	systems	only!

DSL policy

Compiled	policy
(kernel	module)

Existing	bossa-ified	
kernel

Bossa
compiler/verifierEvent

Interface

Bossa

Jean-Pierre	Lozi

1. Implementing scheduling policies must	be simple	enough to	be doable
by	an	application	developer (not	a	Linux	kernel expert)

2. Scheduling policies must	be proven safe so that they do	not	hang or	
crash	the	kernel

3. Scheduling policies must	be proven free	of	the	recently identified
performance	bugs

4. Scheduling policies must	capture	the	diversity of	modern	multicore
architectures

5. The	approach should not	introduce a	performance	penalty

Bossa provides: 1,	2,	and	5

Jean-Pierre	Lozi

- Abstractions	inherited	from	the	Bossa	DSL

Jean-Pierre	Lozi

- Abstractions	inherited	from	the	Bossa	DSL

- Abstractions	dedicated	to	multicore	architectures
- Objective:	no	explicit	synchronization

Jean-Pierre	Lozi

- Abstractions	inherited	from	the	Bossa	DSL

- Abstractions	dedicated	to	multicore	architectures
- Objective:	no	explicit	synchronization

- Verification	of	properties
- Co-design	of	the	proofs	with	the	design	of	the	DSL	abstractions
- Translation	into	the	Leon	program	verifier

Jean-Pierre	Lozi

- Abstractions	inherited	from	the	Bossa	DSL

- Abstractions	dedicated	to	multicore	architectures
- Objective:	no	explicit	synchronization

- Verification	of	properties
- Co-design	of	the	proofs	with	the	design	of	the	DSL	abstractions
- Translation	into	the	Leon	program	verifier

DSL policy

Compiled	C	policy
(kernel	module)

Existing	bossa-
ified	kernel

Bossa
C	compilerEvent

Interface

Bossa
Leon	compiler Compiled	Leon

policy	(used	for
checking	properties)

Jean-Pierre	Lozi

- Properties	checked	with	Leon:
- Load-balancing	is	work-conserving	(can	ensure	it	on	« reasonable »	policies)
- Load	is	balanced	in	finite	number	of	rounds	of	load-balancing	(assuming	« stable »	system)
- Load-balancing	hierarchy	is	valid:
- Top	level	contains	all	cores
- No	core	in	two	groups	at	same	level

DSL policy

Compiled	C	policy
(kernel	module)

Existing	bossa-
ified	kernel

Bossa
C	compilerEvent

Interface

Bossa
Leon	compiler Compiled	Leon

policy	(used	for
checking	properties)

Scientific	challenges

Jean-Pierre	Lozi

Ipanema also provides: 3	and	4
1. Implementing scheduling policies must	be simple	enough to	be doable

by	an	application	developer (not	a	Linux	kernel expert)
2. Scheduling policies must	be proven safe so that they do	not	hang or	

crash	the	kernel
3. Scheduling policies must	be proven free	of	the	recently identified

performance	bugs
4. Scheduling policies must	capture	the	diversity of	modern	multicore

architectures
5. The	approach should not	introduce a	performance	penalty

What’s	inherited	from	Bossa?

Jean-Pierre	Lozi

What’s	inherited	from	Bossa?

- Abstractions:
- Thread	attributes
- Ordering	criteria
- Thread	states
- Event	handlers
- A	few	more	things	(interface	functions...)

Jean-Pierre	Lozi

What’s	inherited	from	Bossa?

- Abstractions:
- Thread	attributes
- Ordering	criteria
- Thread	states
- Event	handlers
- A	few	more	things	(interface	functions...)

- Properties	(mandatory):
- Termination	of	events,	bounded	loops
- Valid	state	transitions
- No	loss	of	a	thread

Jean-Pierre	Lozi

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Process/thread-local	variables.

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Number	of	quanta	the	process	has	been	running	for.

Process/thread-local	variables.

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Number	of	quanta	the	process	has	been	running	for.

Process/thread-local	variables.

Core-local,	process-related	variables.

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Number	of	quanta	the	process	has	been	running	for.

Process/thread-local	variables.

Core-local,	process-related	variables.

Process	currently	running	on	the	core.

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Number	of	quanta	the	process	has	been	running	for.

Process/thread-local	variables.

Core-local,	process-related	variables.

Process	currently	running	on	the	core.

List	of	processes,	ordered	by	quantum	(lazy	
evaluation),	can	be	accessed	by	other	
processes	(shared keyword).

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Number	of	quanta	the	process	has	been	running	for.

Process/thread-local	variables.

Core-local,	process-related	variables.

Process	currently	running	on	the	core.

List	of	processes,	ordered	by	quantum	(lazy	
evaluation),	can	be	accessed	by	other	
processes	(shared keyword).

List	of	blocked	processes	(on	an	I/O,	a	lock).

Process/thread	and	core-local	abstractions:

Jean-Pierre	Lozi

process = {
int quanta;
int load;

}

core = {
processes = {

RUNNING process current;
shared READY set<process> ready : order = {lowest quanta};

BLOCKED set<process> blocked;
TERMINATED terminated;

}
...
}

Number	of	quanta	the	process	has	been	running	for.

Process/thread-local	variables.

Core-local,	process-related	variables.

Process	currently	running	on	the	core.

List	of	processes,	ordered	by	quantum	(lazy	
evaluation),	can	be	accessed	by	other	
processes	(shared keyword).

List	of	blocked	processes	(on	an	I/O,	a	lock).

No	reference	kept	(pseudo-state).

Process events:
handler (process_event e) {

on tick {
e.target.quanta++;
if (e.target.quanta % 5 == 0) {

e.target => ready;
}

}
on yield {

e.target => ready;
}
on block {

e.target => blocked;
}
on unblock {

e.target => ready;
}
on schedule {

first(ready) => current;
}

}

Process events:
handler (process_event e) {

on tick {
e.target.quanta++;
if (e.target.quanta % 5 == 0) {

e.target => ready;
}

}
on yield {

e.target => ready;
}
on block {

e.target => blocked;
}
on unblock {

e.target => ready;
}
on schedule {

first(ready) => current;
}

}

Handlers	for	all	events	regarding	a	process	(or	thread).

Process events:
handler (process_event e) {

on tick {
e.target.quanta++;
if (e.target.quanta % 5 == 0) {

e.target => ready;
}

}
on yield {

e.target => ready;
}
on block {

e.target => blocked;
}
on unblock {

e.target => ready;
}
on schedule {

first(ready) => current;
}

}

Handlers	for	all	events	regarding	a	process	(or	thread).

Context	switch	(will	trigger	schedule).	Implicit	list	management.

Process events:
handler (process_event e) {

on tick {
e.target.quanta++;
if (e.target.quanta % 5 == 0) {

e.target => ready;
}

}
on yield {

e.target => ready;
}
on block {

e.target => blocked;
}
on unblock {

e.target => ready;
}
on schedule {

first(ready) => current;
}

}

Handlers	for	all	events	regarding	a	process	(or	thread).

Context	switch	(will	trigger	schedule).	Implicit	list	management.

Uses	ready’s	ordering	criterion.

Process events:
handler (process_event e) {

on tick {
e.target.quanta++;
if (e.target.quanta % 5 == 0) {

e.target => ready;
}

}
on yield {

e.target => ready;
}
on block {

e.target => blocked;
}
on unblock {

e.target => ready;
}
on schedule {

first(ready) => current;
}

}

Handlers	for	all	events	regarding	a	process	(or	thread).

Context	switch	(will	trigger	schedule).	Implicit	list	management.

Uses	ready’s	ordering	criterion.

Valid	state	transitions	checked	at	compile-time.

What’s	new?	Mostly	multicore	stuff.

Jean-Pierre	Lozi

What’s	new?	Mostly	multicore	stuff.

- Abstractions:
- Core	attributes
- Load	criteria
- Groups	of	cores
- Core	handlers
- Load	balancing	functions

Jean-Pierre	Lozi

What’s	new?	Mostly	multicore	stuff.

- Abstractions:
- Core	attributes
- Load	criteria
- Groups	of	cores
- Core	handlers
- Load	balancing	functions

- Performance/synchronization	properties:
- Locking/sychronization	handled	by	the	framework
- Mostly	trylocks:	if	unable	to	lock	a	runqueue,	give	up	on	stealing	thread	(best	effort)
- Ensure	no	performance	bugs

Jean-Pierre	Lozi

Multicore abstractions:

domain = {
set<group> groups;

}

group = {
set<core> cores;
lazy int load = sum(cores.load);
int capacity = count(cores);

lazy bool is_stealable = or(cores.is_stealable);
}

Jean-Pierre	Lozi

Multicore abstractions:

domain = {
set<group> groups;

}

group = {
set<core> cores;
lazy int load = sum(cores.load);
int capacity = count(cores);

lazy bool is_stealable = or(cores.is_stealable);
}

Scheduling	hierarchy:	works	like	in	Linux,	i.e.	tree	where	at	each	level	a	
domain	contains	groups,	themselves	being	domains	of	lower	level.

Jean-Pierre	Lozi

Multicore abstractions:

domain = {
set<group> groups;

}

group = {
set<core> cores;
lazy int load = sum(cores.load);
int capacity = count(cores);

lazy bool is_stealable = or(cores.is_stealable);
}

Scheduling	hierarchy:	works	like	in	Linux,	i.e.	tree	where	at	each	level	a	
domain	contains	groups,	themselves	being	domains	of	lower	level.

Evaluated	when	value	is	read	(lazy).

Jean-Pierre	Lozi

Multicore abstractions:

domain = {
set<group> groups;

}

group = {
set<core> cores;
lazy int load = sum(cores.load);
int capacity = count(cores);

lazy bool is_stealable = or(cores.is_stealable);
}

Scheduling	hierarchy:	works	like	in	Linux,	i.e.	tree	where	at	each	level	a	
domain	contains	groups,	themselves	being	domains	of	lower	level.

Evaluated	when	value	is	read	(lazy).

Stealing	from	this	group	won’t	cause	load	conservation	issues.

Jean-Pierre	Lozi

Multicore abstractions:

domain = {
set<group> groups;

}

group = {
set<core> cores;
lazy int load = sum(cores.load);
int capacity = count(cores);

lazy bool is_stealable = or(cores.is_stealable);
}

Scheduling	hierarchy:	works	like	in	Linux,	i.e.	tree	where	at	each	level	a	
domain	contains	groups,	themselves	being	domains	of	lower	level.

Evaluated	when	value	is	read	(lazy).

Stealing	from	this	group	won’t	cause	load	conservation	issues.

Group	stealable iff one	of	its	cores	is.

Jean-Pierre	Lozi

Core abstractions:
core = {

...

system int id;
lazy int load = sum(current.load, ready.load);
lazy bool is_stealable = count(current, ready) > 1;
set<domain> scheduling_domains;

domains (core self) to scheduling_domains = {
foreach (dist in distances starting_at 1) {

domain (c | distance(c, self) <= dist) to groups = {
group (c1,c2 | distance(c1, c2) <= dist - 1) to cores;

}
}

}
}

Core abstractions:
core = {

...

system int id;
lazy int load = sum(current.load, ready.load);
lazy bool is_stealable = count(current, ready) > 1;
set<domain> scheduling_domains;

domains (core self) to scheduling_domains = {
foreach (dist in distances starting_at 1) {

domain (c | distance(c, self) <= dist) to groups = {
group (c1,c2 | distance(c1, c2) <= dist - 1) to cores;

}
}

}
}

Obtained	from	the	kernel.

Core abstractions:
core = {

...

system int id;
lazy int load = sum(current.load, ready.load);
lazy bool is_stealable = count(current, ready) > 1;
set<domain> scheduling_domains;

domains (core self) to scheduling_domains = {
foreach (dist in distances starting_at 1) {

domain (c | distance(c, self) <= dist) to groups = {
group (c1,c2 | distance(c1, c2) <= dist - 1) to cores;

}
}

}
}

Obtained	from	the	kernel.

Be	work-conserving	(basic).

Core abstractions:
core = {

...

system int id;
lazy int load = sum(current.load, ready.load);
lazy bool is_stealable = count(current, ready) > 1;
set<domain> scheduling_domains;

domains (core self) to scheduling_domains = {
foreach (dist in distances starting_at 1) {

domain (c | distance(c, self) <= dist) to groups = {
group (c1,c2 | distance(c1, c2) <= dist - 1) to cores;

}
}

}
}

Obtained	from	the	kernel.

Be	work-conserving	(basic).

Hierarchy-building	functions	co-designed	with	
proofs:	Leon	code	checks	good	properties	
(top	domain	contains	all	cores,	no	core	in	two	
groups	at	the	same	level...).		

Load balancing:	who steals whom?
handler (core_event e) {

on balancing_select {

foreach (sd in e.target.scheduling_domains) {
group busiest = max(sd.groups order = { highest load / capacity } filter = { is_stealable });

if (valid(busiest)) {
core busiest_core = max(busiest.core order = { highest load } filter = { ready.size >= 1 });
balancing_steal(e.target, busiest_core);

}
}

}

}

Jean-Pierre	Lozi

Load balancing:	who steals whom?
handler (core_event e) {

on balancing_select {

foreach (sd in e.target.scheduling_domains) {
group busiest = max(sd.groups order = { highest load / capacity } filter = { is_stealable });

if (valid(busiest)) {
core busiest_core = max(busiest.core order = { highest load } filter = { ready.size >= 1 });
balancing_steal(e.target, busiest_core);

}
}

}

}

Load	balancing	event.

Jean-Pierre	Lozi

Load balancing:	who steals whom?
handler (core_event e) {

on balancing_select {

foreach (sd in e.target.scheduling_domains) {
group busiest = max(sd.groups order = { highest load / capacity } filter = { is_stealable });

if (valid(busiest)) {
core busiest_core = max(busiest.core order = { highest load } filter = { ready.size >= 1 });
balancing_steal(e.target, busiest_core);

}
}

}

}

Load	balancing	event.

Load-balancing	logic	similar	to	Linux	(simplified).

Jean-Pierre	Lozi

Load balancing:	stealing processes

try void balancing_steal(core self, core busiest) {

int imbalance = (busiest.load - self.load) / 2;
if (imbalance <= 0)

return;

foreach (p in busiest.ready) {
if (imbalance < p.load)

continue;

p => self.ready;

imbalance -= p.load;
if (imbalance <= 0)

break;
}

}

Load balancing:	stealing processes

try void balancing_steal(core self, core busiest) {

int imbalance = (busiest.load - self.load) / 2;
if (imbalance <= 0)

return;

foreach (p in busiest.ready) {
if (imbalance < p.load)

continue;

p => self.ready;

imbalance -= p.load;
if (imbalance <= 0)

break;
}

}

Acquires	locks	automatically	and	may	quietly	fail	(best	effort).

- Makes	programming	multicore	scheduling	policies	possible	for	non-kernel	experts

Jean-Pierre	Lozi

- Makes	programming	multicore	scheduling	policies	possible	for	non-kernel	experts

- Ensures	safety	and	performance	properties:
- Valid	state	transitions,	bounded	loops,	terminating	events,	no	loss	of	process
- Work-conservation,	eventual	balancing,	valid	hierarchy

Jean-Pierre	Lozi

- Makes	programming	multicore	scheduling	policies	possible	for	non-kernel	experts

- Ensures	safety	and	performance	properties:
- Valid	state	transitions,	bounded	loops,	terminating	events,	no	loss	of	process
- Work-conservation,	eventual	balancing,	valid	hierarchy

- Useful	for	research,	teaching,	and	real-world	scenarios

Jean-Pierre	Lozi

- Makes	programming	multicore	scheduling	policies	possible	for	non-kernel	experts

- Ensures	safety	and	performance	properties:
- Valid	state	transitions,	bounded	loops,	terminating	events,	no	loss	of	process
- Work-conservation,	eventual	balancing,	valid	hierarchy

- Useful	for	research,	teaching,	and	real-world	scenarios
- Current	status:
- DSL	nearly	completed,	verification	of	static	properties
- Basic	versions	of	the	Ipanema	runtime	and	compiler
- Manual	verifications	of	multicore	properties	with	Leon

Jean-Pierre	Lozi

- Makes	programming	multicore	scheduling	policies	possible	for	non-kernel	experts

- Ensures	safety	and	performance	properties:
- Valid	state	transitions,	bounded	loops,	terminating	events,	no	loss	of	process
- Work-conservation,	eventual	balancing,	valid	hierarchy

- Useful	for	research,	teaching,	and	real-world	scenarios
- Current	status:
- DSL	nearly	completed,	verification	of	static	properties
- Basic	versions	of	the	Ipanema	runtime	and	compiler
- Manual	verifications	of	multicore	properties	with	Leon

- Everything	about	the	old	Bossa	DSL: http://bossa.lip6.fr

Jean-Pierre	Lozi

