
Byte Queue Limits

Tomáš Hrubý

August 24, 2012

1 / 23

BQL - Motivation

• Packets spend enough time enqueued within the stack

• When a packet gets to a NIC it is enqueued again

• HW queue length in TX descriptors are decided ad-hoc

• The queue length is not directly related to bytes or time

2 / 23

What BQL does

• Reduces unnecessary queuing in the NIC by setting the ”right” limit

• Limits queuing to what the NIC is able to TX

• Pushes queuing from NIC to the network stack

• Reduces latency

3 / 23

The limit

• Based on bytes the NIC dequeued recently

• Changes dynamically

• Soft - allows to be exceeded once (overlimit)

• Grows fast and shrinks slowly

4 / 23

The algorithm

Generic implementation in dynamic queue limits (DQL) library

• Packets are queued up to a dynamic limit

• Packets should be periodically retired by a completion event

• Limit is increased whenever the NIC starves (dequeues too fast)

• Limit is decreased when the NIC cannot keep up for a while

Starvation

• When queuing is blocked (limit has been reached)

• All data were consumed

• Completion has not happened yet

5 / 23

Increasing the limit
Interval - the period between to invocations of dql_completed()

ovlimit && !inprogress

• Queue was certainly over limit in this interval

dql->prev_ovlimit && all_prev_completed

• Loose condition, queue might have been starving during the interval

Increment

* When queue is starved increase the limit by the amount

* of bytes both sent and completed in the last interval ,

* plus any previous over -limit.

*/

limit += POSDIFF(completed , dql ->prev_num_queued) +

dql ->prev_ovlimit;

• Limit grows aggressively, can more than double

• Limit stops increasing when it is sufficient
6 / 23

Decreasing the limit
inprogress && prev_inprogress && !all_prev_completed

• Slack is only detected when the queue is busy for the entire interval

• Decrease happens only when slacking for a period of time (1s)

• Conservative - decrease by the minimal slack over the period

• Any increase in the limit resets the period

2 flavors of slack

• slack = POSDIFF(limit + dql ->prev_ovlimit ,

2 * (completed - dql ->num_completed));

• slack_last_objs = dql ->prev_ovlimit ?

POSDIFF(dql ->prev_last_obj_cnt , dql ->prev_ovlimit) : 0;

7 / 23

BQL benefits
Reduced latency

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

9
0
%

 l
a
te

n
c
y
 (

u
s
)

-
lo

g
 s

c
a
le

Number of streams

mq, prio
mq, bql, prio

HW Prio

8 / 23

BQL benefits
The ”right” TX right size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 50 100 150 200 250

9
0
%

 l
a
te

n
c
y
 (

u
s
)

Number of streams

tx-64
tx-96

tx-128
tx-270
tx-500

bql

9 / 23

BQL benefits

The ”right” TX Right size

Packet size Bit rate Mbps Pkt rate kpps Q size bytes Q size pkts

66 ˜1025 ˜1490 ˜9577 ˜145

1514 ˜9995 ˜810 ˜122974 ˜81

single TX process, single queue only

• Default bnx2x TX descriptor queue size is 4078

• Default ixgbe TX descriptor queue size is 4096

• Using BQL, the actually used size is significantly smaller

10 / 23

BQL in action
Minimal packets ˜1Gbps

11 / 23

BQL in action
Minimal packets ˜1Gbps - initial ramp up

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140 160 180 200

b
y
te

s

inflight
limit

12 / 23

BQL in action
Maximal packets ˜10Gbps

13 / 23

BQL in action
1 TCP stream ˜10Gbps (TSO on)

14 / 23

BQL in action
Idle noise

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06

b
y
te

s

limit
inflight

15 / 23

BQL problems

The good news

No case where BQL on would work worse than BQL off
(except non-cooperative hw)

The not so bad news

In some situations, BQL can be tricked to virtually turning itself off by
setting the limit to high.

What is the trick?

Kernel does not guarantee that completion is called periodically

16 / 23

Completion not periodical

Periodicity required

• Impossible to say whether the interval was smaller or longer

• Shorter interval looks like congestion → slack

• Longer interval looks like the NIC can dequeue more → limit too low

Completion called in NAPI loop

• Some driver (e.g., bnx2x, gianfar) retire as much as they can

• Last iteration usually retires much less

• Retiring when exiting NAPI may lead to excessively long interval

• Different interval between iterations and new polling start

17 / 23

Excessively Large limit

• Occasional large interval leads to large limits

• Large limit leads to large increments, which leads to larger limit ...

• Limit decreases only after fairly long period

• Zero or negative slack cancels decreasing (minimum!)

• Large limit tends to stay

18 / 23

Excessive decrease

• Due to occasionally shorter intervals on a loaded link

• Sudden bursts on a lightly loaded link

• Much less of a problem than large limit

• Instantly fixed by immediate limit increase

• Although the limit is low, the NIC dequeues a lot
since the queue is long due to the previously large limit

• The large dequeue is usually complete

19 / 23

Observation

• Limit tends to change when timing changes for the same load

20 / 23

Possible cure

Execute completion only when fixed amount of time elapsed

• What should be the period?

• Needs a timer to deal with corner cases

• Allows calling a completion wrapper for each packet

21 / 23

CoDel

128 Streams vs 1 RR

Feedback RR rate rps Qlen pkt

no BQL (DROP/ECN) ˜94 ˜28
DROP ˜140 ˜113

ECN ˜749 ˜82

• Codel has little effect for RR without BQL

• DROP results in a huge tail latency due to retransmissions

22 / 23

Conclusions

• BQL works fine in vast majority of cases

• BQL may set excessive limit

• Never worse than not having BQL

• Essential for CoDel

23 / 23

