Propagating thermal constraints to the scheduler

Punit Agrawal < punit . agrawal@arm . com>

CPU based cooling mechanisms

- Rely on controlling compute capacity to control power dissipation
- Control parameters
 - frequency
 - active core count
 - utilisation
- Work independent of the scheduler
 - essential to close the loop to maximize performance

Building blocks

- Energy Aware Scheduling (EAS)
 - introduces core capacity and corresponding power consumption
- Power allocator
 - controls power consumption to control temperature
 - allocates power to requesting cooling devices
 - cooling devices use power model to translate power to performance and vice versa

Frequency control feedback

- Multiple DVFS domains are common in modern SoCs...
 - per-core
 - cluster of cores
 - multi-socket
- Heterogenous setups such as big.LITTLE
- Feedback the current maximum frequency / capacity
 - Due to capacity awareness, scheduler can now react to changes in DVFS domain capacity
 - On big.LITTLE, capacity inversion handled correctly as well
- Testing a prototype that builds on top of capacity awareness introduced by EAS

Single DVFS domain - I

- For a power allocation, the behaviour today
 - translation to performance is modulated by load
 - load varying from 100% to N*100%
 - frequency cap inversely follows load
- Response at thermal sub-system granularity

Single DVFS domain - II

- Peak performance reducing with power allocation
 - continues load modulated translation to performance
- Response at thermal sub-system granularity

Multiple DVFS domains

- Cooling device span all CPUs DVFS domain
 - heterogeneous uArch such as big.LITTLE
 - different peak frequencies

Multiple DVFS domains

- Cooling device span all CPUs DVFS domain
 - heterogeneous uArch such as big.LITTLE
 - different peak frequencies
- Three regions of behaviour
 - big frequency varying out of phase with load
 - LITTLE frequency varying as load
 - LITTLE frequency varying out of phase with load

Going further

- Respond at scheduler granularity
 - will hook into SCHED_DVFS

Going further

- Respond at scheduler granularity
 - will hook into SCHED_DVFS
- Beyond frequency control
 - idling cores in conjunction with scheduler

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

