
Device Tree Plumbers 2015
Dynamic DT and tools

Pantelis Antoniou <pantelis.antoniou@konsulko.com>

mailto:pantelis.antoniou@konsulko.com

Device Tree Overlays overview and
use cases

Ê Device Tree Overlays are now in the mainline kernel. This session
will cover what they are, how they are used.

Ê Device tree overlays

Ê Device tree changeset

Ê The phandle resolution mechanism

Ê Overlay overlap removal checks

Ê Device tree variants (or quirks).

2

Overlays Describe Hardware

Ê Hardware may not be static; not known at boot time.

Ê Capes, Hats, Expansion boards

Ê FPGAs

Ê Weird topology/device requirements

Ê Or hardware is static, but using overlays is easier to manage.10s
of board variants, would require a different DTB for each. Hard
to do in the bootloader. Easier just to use an overlay.

Ê Useful even on busses that can be probed. I2C devices on a PCI/
USB host bus device.

3

CONFIG_OF_DYNAMIC

Ê Allows modification of the Live Device Tree at runtime.

Ê Not very widely used until now – only on Power.

Ê Destructive editing of the live tree

Ê Non atomic

Ê Changes cannot be reverted

Ê No connection to the bus driver model; changes to the live tree
do not get reflected.

Ê Part of the puzzle, but not enough as it was.

4

Part 1: Reworking OF_DYNAMIC

Ê /proc → /sys (gcl)

Ê struct device_node now a kobj (gcl)

Ê drivers/of/dynamic.c

Ê Semantics of the of_reconfig notifiers have changed.

Ê Major new user is dt selftests. Test case data dynamically inserted.

Ê Already accepted in mainline (3.17)

5

Part 2: Dynamic Resolution (foo.dts)

/* foo.dts */

/dts-v1/;

/ {

 bar = <&FOO>; /* compiles to bar = <1>; */

 FOO: foo { }; /* dtc assigns value of 1 to foo phandle */

};

6

Dynamic Resolution (qux.dts)

/* qux.dts */

/dts-v1/;

/plugin/;

/ {

 qux = <&BAZ>; /* compiles to qux = <1>; */

 quux = <&FOO>; /* ??? Only possible to resolve on runtime */

 BAZ: baz { }; /* dtc assigns value of 1 to baz phandle */

};

7

Resolving phandles

Ê Phandles are pointers to other parts in the tree. For example
pinmuxing, interrupt-parent etc.

Ê Phandles are internally represented by a single 32 scalar value
and are assigned by the DTC compiler when compiling

Ê Extension to the DTC compiler required, patchset already in v2,
minor rework is required.

Ê “dtc: Dynamic symbols & fixup support (v2)”

8

Changes made to the DT Compiler

Ê ABSOLUTELY NO CHANGES TO THE DTB FORMAT.

Ê -@ command line option global enable.

Ê Generates extra nodes in the root (__symbols__, __fixups__,
__local_fixups__) containing resolution data.

Ê /plugin/ marks a device tree fragment/object (controls generation
of __fixups__ and __local_fixups__ nodes).

Ê To perform resolution the base tree needs to be compiled using
the -@ option and causes generation of __symbols__ node only.

9

Compiling foo.dts (base tree)

$ dtc -O dtb -o foo.dtb -b 0 -@ foo.dts && fdtdump foo.dtb

/ {

 bar = <0x00000001>;

 foo {

 linux,phandle = <0x00000001>;

 phandle = <0x00000001>;

 };

 __symbols__ {

 FOO = "/foo";

 };

};
10

Compiling qux.dts (object)

11

$ dtc -O dtb -o qux.dtbo -b 0 -@ qux.dts && fdtdump qux.dtbo

/ {

 qux = <0x00000001>;

 quux = <0xdeadbeef>;

 baz {

 linux,phandle = <0x00000001>;

 phandle = <0x00000001>;

 };

 __symbols__ { BAZ = "/baz"; };

 __fixups__ { FOO = "/:quux:0"; };

 __local_fixups__ { fixup = "/:qux:0"; };

};

How the resolver works

Ê Get the max device tree phandle value from the live tree + 1.

Ê Adjust all the local phandles of the tree to resolve by that amount.

Ê Using the __local__fixups__ node information adjust all local
references by the same amount.

Ê For each property in the __fixups__ node locate the node it
references in the live tree. This is the label used to tag the node.

Ê Retrieve the phandle of the target of the fixup.

Ê For each fixup in the property locate the node:property:offset
location and replace it with the phandle value.

12

Part 3: Changesets/Transactions

Ê A Device Tree changeset is a method which allows us to apply a
set of changes to the live tree.

Ê Either the full set of changes apply or none at all.

Ê Only after a changeset is applied notifiers are fired; that way the
receivers only see coherent live tree states.

Ê A changeset can be reverted at any time.

Ê Part of mainline as of 3.17.

13

Changesets in kernel API

Ê Issue of_changeset_init() to prepare the changeset.

Ê Perform your changes using of_changeset_ 
{attach_node|detach_node|add_property|
remove_property|update_property}()

Ê Lock the tree by taking the of_mutex;

Ê Apply the changeset using of_changeset_apply();

Ê Unlock the tree by releasing of_mutex.

Ê To revert everything of_changeset_revert();

14

Changesets helpers

Ê Using changesets manually is a chore.

Ê “of: changesets: Introduce changeset helper methods”

Ê Dynamically allocates memory; to wit instead of using the raw API,

 struct property *prop;

 prop = kzalloc(sizeof(*prop)), GFP_KERNEL);

 prop->name = kstrdup("compatible");

 prop->value = kstrdup("foo,bar");

 prop->length = strlen(prop->value) + 1;

 of_changeset_add_property(ocs, np, prop);

Ê While using the helper API

 of_changeset_add_property_string(ocs, np, “compatible", "foo,bar");
15

Device Tree Overlay format

16

/plugin/;

/ {

 /* set of per-platform overlay manager properties */

 fragment@0 {

 target = <&target-label>; /* or target-path */

 __overlay__ {

 /* contents of the overlay */

 };

 };

 fragment@1 {

 /* second overlay fragment... */

 };

};

Device Tree Overlay in kernel API

Ê Get your device tree overlay blob in memory – using a call to
request_firmware() call, or linking with the blob is fine.

Ê Use of_fdt_unflatten_tree() to convert to live tree
format.

Ê Call of_resolve_phandles() to perform resolution.

Ê Call of_overlay_create() to create & apply the overlay.

Ê Call of_overlay_destroy() to remove and destroy the
overlay. Note that removing overlapping overlays must be
removed in reverse sequence.

17

New functionality in the pipeline

Ê The target is a fixed point in the base device tree. Problematic if
you have plan to connect the same hardware device to different
slots.

Ê Indirect targets solve this by having a re-direction method.

Ê Posted a patch but Guenter’s posted a better one reworked :)

18

Overlays, some times a good idea.

Ê Overlays are powerful. Sometimes too powerful.

Ê Good uses:

Ê Pluggable expansion boards with an identifying method.

Ê Hardware hackers testing designs

Ê FPGAs

Ê Anything that is a result of an action that changes the
hardware topology (i.e. DRM monitor connections)

19

Overlays sometimes a bad idea.

Ê Static changes to a board revision can be expressed via an
Overlay, but it’s late in the boot sequence. Early stuff (like
regulators and clocks) the changes cannot affect those. Better to
use a quirk (or variant)

Ê Generating device tree nodes and properties automatically. I.e.
PCI/USB device node generation (either firmware assisted or
not). Changesets is the way to go.

Ê General rule: if the resulting change in the kernel tree requires
smarts, it’s best to create everything via changesets.

20

Overlays and tools for sanity.

Ê Device Tree overlays represent a big change for the device tree
in the kernel. Where as of old the device tree was something
static; now it's something that can change at runtime.

Ê We could use some new tools to help us when creating them
(compile time) and some kernel tooling to help when applying
them (run time).

21

Compile time overlay tooling

Ê Right now the changes to DTC are minimal.

Ê Overlay is compiled without a reference to the base DTS.

Ê Need an option to compile against a base DTS to validate that
the overlay will load.

Ê For testing purposes a method to generate at compile time the
DTS resulting from an application of an overlay.

Ê New APIs are even more demanding for example portable
connector based overlays will need property matching.

Ê DT diff? Generate an overlay to patch DTBs.
22

Compile time overlay tooling

Ê Device Tree overlays represent a big change for the device tree in the kernel. Where
as of old the device tree was something static; now it's something that can change at
runtime.

Ê We could use some new tools to help us when creating them (compile time) and
some kernel tooling to help when applying them (run time).

Ê Frank's NOTE:

Ê Overlays tools needed: generating, test, validation

Ê From Rob's email comments:

Ê How to test an overlay applies?

Ê Generating a dtb from dts + overlay dts.

Ê Generating an overlay from a diff of old and new dts (overlay as a way to
update old dtbs)

23

Runtime time overlay tooling

Ê Not just an overlay problem. There is no acceptable type
information for properties.

Ê That means that one could modify the kernel live tree with
properties that make no sense.

Ê How to carry type information (and perform checks).

Ê of_reconfig notifiers could be used, but doing it manually is
madness.

Ê Need to store the type information in the DT itself.

24

Device Tree probe order and parallel
device probing - Pantelis

Ê Making the phandle resolver to work means that phandles and
the location where they are references are tracked.

Ê Makes it possible to track dependencies of one subtree to
another.

Ê Device references a DMA channel? That device is dependent
on the DMA controller driver.

Ê We can create a schedule of device probes.

Ê Trivially we can create a parallel schedule of device probes.

25

Why probe order is a problem?

Ê Not all drivers handle correctly EPROBE_DEFER.

Ê Excessive defers slow down kernel boot.

Ê People pepper the kernel with subsys_init() calls to force
ordering.

Ê Device tree dependency tracking not the first time attempted.

Ê Deferred probe patches are floating around.

26

Driver core changes request?

Ê The order of probe calls is not the order of calling
device_create(). It is actually much later when the driver is
matched to a device.

Ê Making all this work for device tree is OK, but we need to handle
other methods (yay for x86).

Ê Device core should track dependencies and probe order,
backend should fill it in.

27

Thank you for listening

Devicetree Overlay use at Juniper Networks

Guenter Roeck
groeck@juniper.net

System Overview
● PTX5000 Packet Transport Router

– Routing Engine
● Routing protocols, administrative tasks
● Interfaces to other cards in the system

– 8 x FPC (Flexible PIC Concentrator)
● 2 x PIC per FPC

– Control Board
● 9 x SIB (Switch Interface Board) per CB

– All cards identified using I2C EEPROMs
– Card connectors use multiple interface types

● I2C, GPIO, PCIe, SERDES, …

– Various CPU types
● P2020, P5020, P5040, x86

Devicetree overlay use

● All OIR capable cards managed with devicetree
overlays
– RE

● FPCs, Fan tray, power supply, ...

– FPC
● PICs

– Control Board
● SIBs

● Each card represented as 'connector' node in
devicetree data

'connector' nodes
pic0 {
 compatible = "jnx,pic-connector", "simple-bus";
 slot = <0>;
 auto-enable;
 ovname = "jnx_pic0", "jnx_pic0_pwr";
 presence-detect-gpios = <&gpio20 148 0x1>; /* active low */
 attention-button-gpios = <&gpio20 150 0x1>; /* active low */
 power-enable-gpios = <&gpio20 154 0x0>; /* active high */
 power-status-gpios = <&gpio20 151 0x0>; /* active high */
 reset-gpios = <&gpio20 153 0x1>; /* active low */
 power-enable-timeout = <2000>; /* in ms */
 attention-button-holdtime = <3000>; /* in ms */
 activation-timeout = <5000>; /* in ms */
 debounce-interval = <1>;
 led-green = <&pic0_green>;
 led-red = <&pic0_red>;

 i2c-bus {
 #address-cells = <1>;
 #size-cells = <0>;

 i2c-parent = <&pic0i2c>;

 eeprom@54 {
 compatible = "atmel,24c02";
 reg = <0x54>;
 ideeprom;
 };
 };
 };

Connector driver

● Functionality
– Manages card insertion and removal

– Responsible for loading and removing devicetree
overlays

– State machine with 10 states and 12 events

● Status
– Reliably loads and removes overlays

– Some limitations and concerns

Limitations

● Power management
– After enabling power, chips may be immediately

visible on bus
● PCIe: hotplug driver attempts to load driver before

overlay is loaded

– Kind of solved by using layered overlays
● First overlay inserted after card identified, prior to

enabling power
● Second overlay inserted after power enabled and stable

Limitations

● Indirect target support
– Currently requires information within overlay for

each slot

– Problematic if card is re-used in a different chassis

– Limited scalability

– Proposal: Simplify API by providing reference(s)
from calling code

● of_overlay_indirect() gets reference(s) instead of slot
number as parameter

Limitations

● No DT / DT Overlay support on x86
– Mandatory for us
– Other solutions either not feasible or not scalable

● ACPI
– Not supported on all architectures
– No overlays

● Platform data is clumsy
– Requires new driver / code for each new card

● Card management from user space does not work
– Yes, we tried ...

– Implemented and working with small patch set on top
of upstream kernel

