Project Ara: Redefining **Handset and Android** Architecture

Android MC / LPC 2015

Karim Yaghmour

DISCLAIMER:I do NOT speak for GoogleI do NOT speak for Project Ara

Project Ara = lots of teams from lots of organizations

My role = help with Android architecture

I know **nothing** of:

Release dates, Pricing, Business plans, etc.

In short:

- 1. File this presentation under "creative artwork"
- 2. All opinions are mine :-)

About

Author of:

- Introduced Linux Trace Toolkit in 1999
- Originated Adeos and relayfs (kernel/relay.c)
- Ara Android Arch Oversight
- Training, Custom Dev, Consulting, ...

Project Ara: Redefining Handset and Android Architecture

- 1. Traditional Phone Architecture
- 2. Origins and Goals of Project Ara
- 3. Module Ecosystem
- 4. Cool Technologies
- 5. Hardware Architecture
- 6. Software Architecture
- 7. Challenges
- 8. What's next?

1. Traditional Phone Architecture

- Hardware Schematic
- SoC
- Android

Stock Android Apps

Launcher2 Phone AlarmClock
Email Settings Camera
Gallery Mms DeskClock
Calendar Browser Bluetooth
Calculator Contacts

Your Apps / Market Apps

App API

android.*

Binder

System Services

Power Manager Mount
Activity Manager Notification
Package Manager Location
Battery Service Surface

Mount Service Notification Manager Location Manager Surface Flinger Status Bar Manager Sensor Service Window Manager java.* (Apache Harmony)

Zygote (ART, libandroid_runtime.so, Preloaded Classes)

JN

Libraries
Bionic / zlib / OpenSSL / ...

Hardware Abstraction Layer

Native Daemons

Init / Toolbox

Linux Kernel

Wakelocks / Binder / Ashmem / ION / ...

2. Origins and Goals of Project Ara

- DARPA
- ATAP
- MAKEwithMOTO
- Modu
- Phonebloks
- Launch of Project Ara
- Project Ara Today

2.1. DARPA

- Defense Advanced Research Projects Agency
- Launched as a reaction to Sputnik in 1958
- Prevent and preempt technological surprise
- Birthplace of the Internet

- Key Tenets
 - Small/Flexible
 - Flat
 - Autonomous
 - Short mandates
 - World-class teams

2.2. ATAP

- Advanced Technologies and Projects
- Founded in Motorola in 2012
- Started by DARPA veterans
- Based on DARPA model
- Part of Google's Motorola acquisition
- Retained by Google after Lenovo acquisition

2.3. MAKEwithMOTO

- 5 month tour in 2013
- 16 stops: 12 universities & 4 Maker Faires
- Short creative marathons
- Mobile device-centric projects

2.4. Modu

- Israeli startup started in 2007
- Modular cell phone to be used in other devices
- Customizable look and feel
- Ceased to operate in February 2011
- Patents purchased by Google

2.5. Phonebloks

- Initially just a concept video
- Internet hit coincides with Project Ara's creation
- Invited to Collaborate with Project Ara (https://www.youtube.com/watch?v=BaPf4ZIbDVM)

2.6. Launch of Project Ara

- Announced by Motorola in October 2013
- Led by Paul Eremenko, from MAKEwithMOTO
- First developer conference April 15-16, 2014
- Announcement of the Module Development Kit

Demo at convincing scale

2.7. Project Ara Today

3. Module Ecosystem

- What's a module:
 - Ara building block
 - Much like an app in the app ecosystem
- Module developers are independent players
- Module market / ecosystem for getting/provisioning modules
- Rules on how to build modules -- MDK:
 - Form-factors
 - Design language
 - Software
 - etc.
- Get the MDK from projectara.com

- What to do for a module -- typically:
 - Hardware (actual pluggable module)
 - Firmware (to communicate with other modules)
 - App (to run on Android)

- Obvious modules:
 - AP
 - Modem
 - Wifi
 - LCD
 - Speaker
 - Camera
 - Batteries,
 - etc.
- Other modules:
 - Whatever you can think of ...

4. Cool Technologies

- MIPI UniPro
- Capacitive (contactless) connectors
- Endoskeleton
- EPMs
- Battery charge/recharge
- Printable covers
- Greybus
- gbsim

4.1. MIPI UniPro

4.1.1 UniPro = Unified Protocol

UniPro protocol stack (this color-coding is a long-standing UniPro tradition)

Layer #		Layer name	Functionality	Data unit name
LA		Application	Payload and transaction semantics	Message
DME	Layer 4	Transport	Ports, multiplexing, flow control	Segment
	Layer 3	Network	Addressing, routing	Packet
	Layer 2	Data link	Single-hop reliability and priority-based arbitration	Frame
	Layer 1.5	PHY adapter	Physical layer abstraction and multi-lane support	UniPro symbol
Layer 1		Physical layer (PHY)	Signaling, clocking, line encoding, power modes	PHY symbol

- UFS
- CSI-3
- DSI-2
- GBT
- UniPort-M (Ara -- UniPro with M-PHY)

4.2. Capacitive (contactless) connectors

4.3. Endoskeleton

4.4. EPMs

4.5. Battery charge/recharge

4.6. Printable covers

4.7. Greybus

- In-kernel infrastructure for Ara
- Support for UniPro
- Support for Ara-specific interfaces:
 - Power bus / Power management
 - Hotplug support
- Communication over UniPro CPorts
- Device classes
- Bridged PHY connection protocols
- https://github.com/gregkh/greybus

4.8. gbsim

- Greybus Simulator:
- https://github.com/ohporter/gbsim

5. Hardware Architecture

6. Software Architecture

6.1. Greybus Device Classes

- Vibrator
- Battery
- Audio
- Baseband modem
- Bluetooth
- Camera
- Consumer IR

- Display
- GPS
- Keymaster
- Lights
- NFC
- Sensors
- Wifi

6.2. Bridged PHY Connection Protocols

- USB
- GPIO
- SPI
- UART
- PWM
- 12C
- SDIO

6.3. Android core

- "Endo" System service
- Endo daemon
- Class-specific additions

Framework

7. Challenges

- Across the entire stack and at every step:
 - SW
 - HW
 - Manufacturing
 - Regulatory (FCC)
 - Compliance (security)

8. What's next?

Stay tuned at www.projectara.com

Thank you ...

karim.yaghmour@opersys.com

