R

®
We adapt. You succeed.

Live Kernel Patching — status update

Jiri Kosina <jiri.kosina@suse.com>
SUSE Labs



Outline

* Why?
e History + current state
* Missing features / further development




Why live patching?

* Huge cost of downtime:
* Hourly cost >$100K for 95% Enterprises — ITIC
* $250K - $350K for a day in a worldwide manufacturing firm - TechTarget

 The goal is clear: reduce planned downtime



http://itic-corp.com/blog/2013/07/one-hour-of-downtime-costs-100k-for-95-of-enterprises/
http://searchdatacenter.techtarget.com/feature/The-causes-and-costs-of-data-center-system-downtime-Advisory-Board-QA

Why live patching?

Change management

Common tiers of change management

1. Incident response
“We are down, actively exploited ...”

Live
2. Emergency change Keme_l
“We could go down, are vulnerable ...” Patching

3. Scheduled change
“Time is not critical, we keep safe”




Outline

 Why?
e History + current state
* Missing features / further development




(History: 1940’s)




History: 2008 - 2014

* 2008: ksplice
 Originally university research opensource project
* stop_machine() + stack inspection for asuring consistency
* Automatic patch generation using binary object comparision
* acquired by Oracle in 2011, source closed
 Commercially deployed for Oracle linux distribution

e 2014: kPatch (Red Hat)

 Built on similar principle (stopping the kernel and inspecting the snapshot of all
existing processess)

* Automatic patch generation
* Deployed as tech preview for Fedora

e 2014: kGraft (SUSE)

* Immediate patching with convergence to fully patched state (“lazy migration”)

« Consistency model: kernel/userspace boundary crossing considered a checkpoint
* Issue: Long sleeping processess, kthreads

* Manual patch creation with help of toolchain
 Commercially deployed; ~80 patches distributed up to today




History: 2008 - 2014

* Checkpoint/restart based solution (CRIU)
* Completely different aproach in principle
Checpoint userspace - kexec new kernel - restore userspace
+ Allows to exchange complete kernel, no matter the nature of the changes
- Hardware reinitialized
- Not “immediate” at all




Lazy migration

welcome to

USERSPACE ‘/;the new universe!

buggy_func

kernel_func

' reality check
heavy eality_
wqu
which universe

are you
coming from?

buggylfunc( )i

fixed_func




History: 2015

* Live patching session at LPC in Dusseldorf

* Technical presentations of competing projects and discussing future
direction

* Mutual agreement on attempting to merge “just one unified thing”
upstream

* The agreed plan:
e Start with a very minimalistic base and have that merged
 Start porting (and combining) competing solutions on top of it, cherry-

picking good ideas step-by-step

* Base (just function redirection + APIl) merged into Linus’ tree in Feb 2015




History: 2015 - now

* New features being gradually added to CONFIG_LIVEPATCH

* Combined (hybrid) consistency model of kGraft + kPatch

* Lazy migration by default, stack examination for long-sleeping
processess/kthreads

* Extending the arch support beyond x86 (s390, ppc64 (arm64))

* objtool + ORC unwinder implemented by Josh Poimboeuf (reliance on FP-
based stack checking has performance implications, DWARF unavailable)




Patch Generation

patches created almost entirely by hand

* (for upstream CONFIG_LIVEPATCH at least)
The source of the patch is single C file

* Easy to review, easy to maintain in a VCS like git
Add fixed functions

Create a list of functions to be replaced

Issue a call to kernel livepatching API
Compile

Insert as a .ko module




Patch Generation

s/proc/cndline.c
+++ b/fs/procscmndline.c

static int cmdline_proc_shouw(struct seq file »m, void =u)

seq_pr intfim, "»s\n', saved command line);
seq_printf(m, “"cmdline_proc_show() has been patched\n", saved_command_line):
return 0;




Patch Generation

static int livepatch_cmdline_proc_shouw(struct seq file =m, void =u)

seq_printfi(m, "#s\n", "this has been live patched”):
return 0:

struct klp_func funcsl] = {
{
.0ld_name = “cmdline_proc_shouw",
.new_func = livepatch_cmdline_proc_show,
I, 1}

struct klp_object objsl] = {1
1
#% name being NULL means umlinux =/
.funcs = funcs,
I 11}

struct klp_patch patch = {
.mod = THIS_MODULE,
.0bjs = objs,

int livepatch_init(void)

int ret:

ret = klp_register_patch(&patch):

if (ret)
return ret:;

ret = klp_enable_patch(&patch):

if (ret) 4
WARN_ON(klp_unregister_patch(&patchl));
return ret:

}

return 0;

ic void livepatch_exit(uvoid)

WARN_DON(klp_unregister_patch(&patchl)):




Outline

 Why?
e History + current state
* Missing features [/ further development




Limitations and missing features

* Inability to deal with data structure / semantics changes

State format transformation

Needed for more complex fixes

Lazy state transformation?

* New functions able to work with both old and new data format

» After code lazy migration is complete, start transforming data structures on access
Shadow variables?

e Associating a new field to the existing structure (can be used by patched callers)
e Currently being implemented by Joe Lawrence

State also contains exclusive access mechanisms

e Spinlocks, mutexes

* Converting those without a deadlock is an unsolved problem

Patch callbacks?

* Allows for arbitrary “fixup” during patch application phases

e [too] powerful, has to be used with care



Limitations and missing features

Model/consistency verification
* |s the change/fix still within the consistency model?
* (other traps: static variables in a func scope, patching schedule(), ...)

e Currently done by human reasoning — error prone and time consuming

» “patch author guide” with best practices:
https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md

Patch creation tooling
* Patches affected by combinatorial explosion (function inlining, ABI breakage by compiler (-fipa-

ra))

* Linking (/ patching relocations) to avoid excessive usage of kallsyms lookup
* manual/kbuild/asmtool, klp-convert, kpatch-build

* Alot of things could be detected automatically

Kprobes

* trarnsferring a kprobe to a new implementation of the function is non-trivial
Extending arch coverage

* FTRACE_WITH_REGS

* objtool + reliable stack unwinding

* Small livepatching glue code



https://github.com/dynup/kpatch/blob/master/doc/patch-author-guide.md

Limitations and missing features

* Inability to patch hand-written ASM
* No fentry, ftrace not aware
* Should be easy in principle

* Userspace patching

 Different problem in principle
* harder to define a “checkpoint” for consistency
* Kernel is very gcc-centric, userspace not so much

* Initial efforts:
 https://github.com/joe-lawrence/linux-inject
* https://github.com/virtuozzo/nsb



https://github.com/joe-lawrence/linux-inject
https://github.com/virtuozzo/nsb

SUSE

We adapt. You succeed.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

