
Copyright (C) 2017 IBM Corporation 1

Hierarchical NUMA

Anshuman Khandual

khandual@linux.vnet.ibm.com
Linux Technology Centre

IBM

mailto:khandual@linux.vnet.ibm.com

Copyright (C) 2017 IBM Corporation 2

Contents

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 3

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 4

Why NUMA

● Some workloads benefit from a single application image running on a big NUMA system

● Accessing an extensive set of processor cores and large shared memory for it’s working set

● Require a large working memory set to be processed in multiple chunks through multiple threads

● Primarily enterprise and HPC workloads fall in this category

For example, the following class of applications fall in that category

● In Memory DB
● ERP
● CRM
● Business Intelligence
● Scientific Research
● Virtualization

Example of some commercially available NUMA systems

● IBM POWER8 E880
● Dell PowerEdge R930
● HP DL980
● Supermicro SYS-7088B-TR4FT

Copyright (C) 2017 IBM Corporation 5

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 6

NUMA Properties
● Systems implement NUMA through various types of NUMA interconnects

● NUMA interconnects can be with or without any data routers

● From CPU’s perspective, distance is just access latency

● Latency depends on NUMA interconnect, number of hops, system bus speed etc

● Represented as a distance factor, how far is the memory from a given CPU

● Platform firmware must provide node_distance[MAX_NUMNODES][MAX_NUMNODES]

● Arch code processes ACPI (X86) or DT (PowerPC) to fetch distance information from firmware

● Arch code needs to export node_distance(a, b) for the core kernel to use every where else

NUMA initialization on POWER

node_distance()
__node_distance()

distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]
associativity(distance_ref_points[])

NUMA initialization on X86

node_distance()
__node_distance()

numa_distance[]

Copyright (C) 2017 IBM Corporation 7

NUMA Memory Representation

memblock mem_section

pagepglist_data zonelist

Arch NUMA Initialization

Platform Firmware

Buddy system

Memblock

Scanning DT or ACPI

Probing the hardware

Memory Hardware

DRAM memory

pglist_data

ZONE_DMAZONE_DMA32ZONE_MOVABLE ZONE_NORMAL

pglist_datapglist_data pglist_data

NODE 0 NODE 1 NODE 2 NODE .. NODE N

free_area[0] free_list

free_area[N] free_list

MIGRATE_UNMOVEABLE

MIGRATE_MOVEABLE

MIGRATE_RECLAIMABLE

MIGRATE_PCTYPES

MIGRATE_HIGHATOMIC

MIGRATE_CMA

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

Copyright (C) 2017 IBM Corporation 8

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 9

Coherent Device Memory (CDM)

● Non system RAM memory which can be accessed coherently from the CPU

● They are similar to system RAM in many characteristics but are still different

● They are comparable in size with system RAM

● They offer specialized functions for applications and drivers to use

● They may be accessed by other forms of device compute

Existing CDM devices

● POWER9 processor accessing NVIDIA Volta GPU over NVLink2

● Persistent Memory (NVDIMM) on both PowerPC and X86 systems

● Intel MCDRAM is a High Bandwidth Memory (HBM) on the chip

Different DRAM

● Existing systems can have DDR2, DDR3 and DDR4, some times in the same system

● DDR5 will be coming in two forms (low power format and standard one)

● They can have different latency, bandwidth and power consumption properties

Copyright (C) 2017 IBM Corporation 10

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 11

ZONE_DEVICE

● Created a brand new zone for persistent memory or NVDIMM

● Developed to represent NVDIMM or persistent memory inside the kernel

● It helps support DAX file system on those devices

● Persistent memory is fast enough, page cache layer is not required

● These memory can have their own struct pages, giving it access to some core MM features

● It attempts to integrate NVDIMM in the kernel while still keeping its own specializations

pglist_data

ZONE_DMAZONE_DMA32ZONE_MOVABLE ZONE_NORMAL

pglist_datapglist_data pglist_data

NODE 0 NODE 1 NODE 2 NODE .. NODE N

ZONE_DEVICE

NVDIMM

page pagemap

Overloading opportunity

device

Copyright (C) 2017 IBM Corporation 12

Heterogeneous Memory Management (HMM)

● Developed to represent unaddressable device memory as coherent

● Creates a new memory type in ZONE_DEVICE for unaddressable memory

● Applicable to device memory which does not support coherency, hence kernel provides coherency

● Kernel achieves the coherency with mirrored page tables and on demand migrations during access

● It helps map completely unaddressable memory in user space as well

pglist_data

ZONE_DMAZONE_DMA32ZONE_MOVABLE ZONE_NORMAL

pglist_datapglist_data pglist_data

NODE 0 NODE 1 NODE 2 NODE .. NODE N

ZONE_DEVICE

NVDIMM

page pagemap

Overloading opportunity

device

Unaddressable Device Memory

Copyright (C) 2017 IBM Corporation 13

HMM CDM (Addressable Coherent Memory)

● Modified version of HMM to support devices with coherent memory

● Creates yet another memory type for coherent device memory in ZONE_DEVICE

● Drops the mirrored page table as the hardware already has the coherency support

● Migration interfaces changed to accommodate this new coherent ZONE_DEVICE memory type

pglist_data

ZONE_DMAZONE_DMA32ZONE_MOVABLE ZONE_NORMAL

pglist_datapglist_data pglist_data

NODE 0 NODE 1 NODE 2 NODE .. NODE N

ZONE_DEVICE

NVDIMM

page pagemap

Overloading opportunity

device

Unaddressable Device Memory Addressable Device Memory

 Copyright (C) 2017 IBM Corporation

CDM NUMA

● Represents CDM as NUMA node to achieve seamless integration

● Device memory remains in ZONE_MOVABLE to avoid kernel allocation into CDM

● Implicit allocation from user space should be avoided to the CDM

● Zonelists (FALLBACK and NOFALLBACK) format changed to achieve the desired isolation

● Applications can have CDM memory through mmap(MPOL_BIND, …...) interface explicitly

● mbind() implementation got changed to walk new zonelists containing CDM zones

pglist_data

ZONE_DMAZONE_DMA32ZONE_MOVABLE ZONE_NORMAL

pglist_data pglist_data

NODE 1 NODE CDM NODE N

pglist_data

NODE 2

pglist_data

NODE 3

ZONE_MOVABLE

FALLBACK NOFALLBACK ……..….. ………... FALLBACK NOFALLBACKModified zonelists

Copyright (C) 2017 IBM Corporation 15

Intel MCDRAM
● Multi Channel DRAM (MCDRAM)

● High Bandwidth Memory (~4x compared to DRAM) but low capacity (Upto 16GB)

● Packaged inside Xeon Phi X200 chip (Knights Landing)

● Can be configured as a third level cache or as a distinct NUMA node

● Data placement on MCDRAM happens through numactl (mbind), memkind and AutoHBW libraries

● This signifies how application can use specialized memory for it's advantage

 https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
● https://software.intel.com/sites/default/files/managed/5f/5e/MCDRAM_Tutorial.pdf

Further Reading

https://software.intel.com/en-us/blogs/2016/01/20/an-intro-to-mcdram-high-bandwidth-memory-on-knights-landing
https://software.intel.com/sites/default/files/managed/5f/5e/MCDRAM_Tutorial.pdf

Copyright (C) 2017 IBM Corporation 16

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 17

Existing NUMA Limitations (Representing CDM)

● Distance, hence latency is not the only memory attribute

● Does not recognize other properties like bandwidth, reliability, power consumption etc

● There can be different types of memory at the same distance (may be connected by different interfaces)

● So what should be the properties of memory ?

● Latency (Speed of random access)

● Bandwidth (Speed of contiguous data stream processing)

● Reliability (Probable rate of memory failure)

● Power consumption (Power consumption in holding the data in memory)

● Density (Compact allocation, power saving, anything else)

Copyright (C) 2017 IBM Corporation 18

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 19

Need for Attribute Based NUMA

● All existing solutions attempt to make core MM understand the very concept of special memory

● ZONE_DEVICE, HMM, HMM CDM

● Does not provide explicit user interface for CDM allocation

● Driver managed and hidden from userspace

● Being on ZONE_DEVICE, it is already isolated from standard allocation paths

● NUMA CDM

● Provides explicit user interface for CDM allocation

● Does invasive changes in kernel to achieve isolation, reclaim and compaction

● For any future CDM memory, attempts will be made to change core kernel to suit its particular needs

● Core MM does not differentiate between various types of memory with different attributes

● Hence, there is a need for unified representation of different kinds of memory in the kernel

● Traditional distance based NUMA has to change to accommodate these new kinds of memory

Copyright (C) 2017 IBM Corporation 20

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 21

Hierarchical NUMA Proposal
● Changes to physical memory representation

● Changes to memblock

● Changes to buddy System

● Changes to virtual memory representation

● New system calls

● Changes to VMA

● Changes to memory policy

● Changes to memory allocation

● New GFP flags

● Changes to __alloc_pages_nodemask()

● Changes to get_pages_from_freelist()

● Changes to __rmqueue_smallest()

● New zone_to_area_mattr() function

● Changes to other memory functions

Copyright (C) 2017 IBM Corporation 22

Physical Memory Representation

Memblock (DRAM) Memblock (DRAM) Memblock (DRAM)

Memblock (CDM) Memblock (CDM) Memblock (CDM)

ZONE

PGDAT

FREE_AREA

FREE_AREA FREE_AREA

rb_cdm (RB Root)

cdm_node cdm_node

Cumulative mattr value is the key for the RB Tree

CDM

ZONE

RAM

CDM

PGDAT

RAM

ZONE

CDM

PGDAT

RAM

ZONE

CDM

PGDAT

RAM

Copyright (C) 2017 IBM Corporation 23

Memblock

struct memblock_region {
phys_addr_t base;
phys_addr_t size;
unsigned long flags; /* VMA flags */
unsigned long mattr; /* Memory attribute flags */

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
int nid;

#endif
};

MEM_LATENCY_MASK 0x000000000000000F /* Memory latency */
MEM_BANDWIDTH_MASK 0x00000000000000F0 /* Memory bandwidth */
MEM_RELIABILITY_MASK 0x0000000000000F00 /* Memory reliability */
MEM_POWERVALUE_MASK 0x000000000000F000 /* Memory power consumption */
MEM_DEVICECOMP_MASK 0x00000000000F0000 /* Memory device compute */
MEM_DENSITY_MASK 0x0000000000F00000 /* Memory density */

MEM_LATENCY_SHIFT 0
MEM_BANDWIDTH_SHIFT 4
MEM_RELIABILITY_SHIFT 8
MEM_POWERVALUE_SHIFT 12
MEM_DEVICECOMPUTE_MASK 16
MEM_DENSITY_MASK 20

Copyright (C) 2017 IBM Corporation 24

Buddy System (PGLIST_DATA)

struct cdm_node {
struct rb_node node; /* Attached to rb_cdm */
unsigned long mattr; /* Memblock attributes */

 struct free_area free_area[MAX_ORDER]; /* CDM buddy system */
 }

struct zone {
……………………
struct free_area free_area[MAX_ORDER}; /* Contains DRAM */
struct rb_root rb_cdm; /* Contains CDM */
unsigned long nr_cdm; /* Total CDM nodes on the zone */
struct cdm_node *cdm_ind[MAX_PROPERTY][MAX_CDM]; /* Search cache */
struct cdm_node *cdm_cum[MAX_CDM]; /* Search cache */

}

● zone→(rb_cdm, nr_cdm, cdm_ind, cdm_cum) gets updated during boot and memory hotplug

● Contiguous memory_regions need to have same memory attribute to be a single CDM node

● A zone can contain multiple CDM nodes with different properties forming a RB tree

● Cumulative value of ‘mattr’ is the key while inserting the node into RB tree

● Cumulative value adds up all memory attribute values for the CDM

● CDM nodes remain balanced in the RB tree and forms a 'hierarchical' system

Copyright (C) 2017 IBM Corporation 25

Virtual Memory Representation

VMA vm_mattr

mmap_attr mbind_attr madvise_mattrget_mempolicy_mattr set_mempolicy_mattr move_pages_mattr

mempolicy

task_struct

mempolicy

mm_struct

Applicable mempolicy

Influences memory allocation for the process

New System Calls

mattrmattr

Copyright (C) 2017 IBM Corporation 26

Virtual Memory Area (VMA)

struct vma_area_struct {
…...
unsigned long vm_flags; /* Existing VMA flags */
unsigned long vm_mattr; /* Contains memory attribute flags */
…...

}

VM_LATENCY_MASK 0x000000000000000F /* Memory latency */
VM_BANDWIDTH_MASK 0x00000000000000F0 /* Memory bandwidth */
VM_RELIABILITY_MASK 0x0000000000000F00 /* Memory reliability */
VM_POWERVALUE_MASK 0x000000000000F000 /* Memory power consumption */
VM_DEVICECOMP_MASK 0x00000000000F0000 /* Memory device compute */
VM_DENSITY_MASK 0x0000000000F00000 /* Memory density */

VM_LATENCY_SHIFT 0
VM_BANDWIDTH_SHIFT 4
VM_RELIABILITY_SHIFT 8
VM_POWERVALUE_SHIFT 12
VM_DEVICECOMPUTE_MASK 16
VM_DENSITY_MASK 20

● VMA memory attributes look similar to that of memblock ? They are but

● VMA memory attributes will be ABI where as memblock attributes can change later

Copyright (C) 2017 IBM Corporation 27

Memory Policy

struct mempolicy {
atomic_t refcnt;
unsigned short mode;
unsigned short flags;
unsigned long mattr; /* Contains VMA mattr flags */
union {

short preferred_node;
nodemask_t nodes;

} v;
union {

nodemask_t cpuset_mems_allowed;
nodemask_t user_nodemask;

} w;
};

● Memory policy structure can belong to either to a VMA or to the entire task

● Why copy VMA flags into memory policy ? It improves performance during page fault

● During each page fault, mmap_sem need not be held to read vma→vm_mattr

Copyright (C) 2017 IBM Corporation 28

GFP Flags

__GFP_LATENCY_1
__GFP_LATENCY_2
__GFP_LATENCY_3
__GFP_LATENCY_4
__GFP_LATENCY_5
__GFP_LATENCY_6
__GFP_LATENCY_7
__GFP_LATENCY_8
__GFP_LATENCY_9
__GFP_LATENCY_10
__GFP_LATENCY_11
__GFP_LATENCY_12
__GFP_LATENCY_13
__GFP_LATENCY_14
__GFP_LATENCY_15
__GFP_LATENCY_16

__GFP_BANDWIDTH_1
__GFP_BANDWIDTH_2
__GFP_BANDWIDTH_3
__GFP_BANDWIDTH_4
__GFP_BANDWIDTH_5
__GFP_BANDWIDTH_6
__GFP_BANDWIDTH_7
__GFP_BANDWIDTH_8
__GFP_BANDWIDTH_9
__GFP_BANDWIDTH_10
__GFP_BANDWIDTH_11
__GFP_BANDWIDTH_12
__GFP_BANDWIDTH_13
__GFP_BANDWIDTH_14
__GFP_BANDWIDTH_15
__GFP_BANDWIDTH_16

__GFP_RELIABILITY_1
__GFP_RELIABILITY_2
__GFP_RELIABILITY_3
__GFP_RELIABILITY_4
__GFP_RELIABILITY_5
__GFP_RELIABILITY_6
__GFP_RELIABILITY_7
__GFP_RELIABILITY_8
__GFP_RELIABILITY_9
__GFP_RELIABILITY_10
__GFP_RELIABILITY_11
__GFP_RELIABILITY_12
__GFP_RELIABILITY_13
__GFP_RELIABILITY_14
__GFP_RELIABILITY_15
__GFP_RELIABILITY_16

LATENCY BANDWIDTH RELIABILITY

Copyright (C) 2017 IBM Corporation 29

GFP Flags (Cont..)

__GFP_POWERVALUE_1
__GFP_POWERVALUE_2
__GFP_POWERVALUE_3
__GFP_POWERVALUE_4
__GFP_POWERVALUE_5
__GFP_POWERVALUE_6
__GFP_POWERVALUE_7
__GFP_POWERVALUE_8
__GFP_POWERVALUE_9
__GFP_POWERVALUE_10
__GFP_POWERVALUE_11
__GFP_POWERVALUE_12
__GFP_POWERVALUE_13
__GFP_POWERVALUE_14
__GFP_POWERVALUE_15
__GFP_POWERVALUE_16

__GFP_DEVICECOMP_1
__GFP_DEVICECOMP_2
__GFP_DEVICECOMP_3
__GFP_DEVICECOMP_4
__GFP_DEVICECOMP_5
__GFP_DEVICECOMP_6
__GFP_DEVICECOMP_7
__GFP_DEVICECOMP_8
__GFP_DEVICECOMP_9
__GFP_DEVICECOMP_10
__GFP_DEVICECOMP_11
__GFP_DEVICECOMP_12
__GFP_DEVICECOMP_13
__GFP_DEVICECOMP_14
__GFP_DEVICECOMP_15
__GFP_DEVICECOMP_16

__GFP_DENSITY_1
__GFP_DENSITY_2
__GFP_DENSITY_3
__GFP_DENSITY_4
__GFP_DENSITY_5
__GFP_DENSITY_6
__GFP_DENSITY_7
__GFP_DENSITY_8
__GFP_DENSITY_9
__GFP_DENSITY_10
__GFP_DENSITY_11
__GFP_DENSITY_12
__GFP_DENSITY_13
__GFP_DENSITY_14
__GFP_DENSITY_15
__GFP_DENSITY_16

POWER VALUE DEVICE COMPUTE DENSITY

Copyright (C) 2017 IBM Corporation 30

Memory Allocation

alloc_pages_vma

alloc_pages

GFP_HIGHUSER_MOVABLE

__alloc_pages_nodemask

gfp_flags |= mem_attr_to_gfp(pol->mattr)

Any GFP flag as required

ac→mattr = gfp_flags & GFP_MATTR_MASK

gfp_flags &= ~GFP_MATTR_MASK

get_page_from_freelist

User Allocation

Kernel Allocation

ac→mattr goes into all down functions here on wards

gfp_flags now does not have memory attributes

struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zoneref *preferred_zoneref;
int migratetype;
enum zone_type high_zoneidx;
bool spread_dirty_pages;
unsigned long mattr;

};

Copyright (C) 2017 IBM Corporation 31

Memory Allocation (Cont..)

get_page_from_freelist

ac--->mattr

rmqueue

__rmqueue

__rmqueue_smallest

area = &(zone->free_area[current_order]) area = zone_to_area_mattr(zone, mattr, current_order)

page = list_first_entry_or_null(&area->free_list[migratetype], struct page, lru)

If (mattr) → then CDMIf (!mattr) → then DRAM

Copyright (C) 2017 IBM Corporation 32

Memory Allocation (Cont..)

area = zone_to_area_mattr(zone, mattr, current_order)

ZONE

FREE_AREA[]

FREE_AREA[]

rb_cdm

cdm_node

cdm_node

FREE_AREA[]

cdm_node

FREE_AREA[]

FREE_AREA[]

cdm_node

cdm_node

FREE_AREA[]

cdm_node

● If mattr contains a single attribute, match the exact or closest of the same attribute

● If mattr contains multiple attributes, match the exact or closest match for cumulative value

cdm_ind[MAX_PROPERTY][MAX_CDM]cdm_cum[MAX_CDM]

Copyright (C) 2017 IBM Corporation 33

Memory Attribute Matching

Requested memory attributes

CDM CDM CDM CDM

Matching may not be straight forward There may not be a straight match

Single Attribute Request Multiple Attribute Request All Attribute Request

CDM

CDM

CDM

Exact or closest match on single attribute Exact or closest match on cumulative attribute

Exact or closest match on cumulative attribute
for applicable attributes as per request

Refer zone→cdm_ind[][] Refer zone→cdm_cum[] []

Walk RB tree again

Copyright (C) 2017 IBM Corporation 34

Other Memory Functions

Memory allocation sub functions

● Compaction

● struct compact_control must contain memory attributes
● zone_to_area_mattr() is called to find appropriate free_area[order] in a given zone

● Reclaim

● struct scan_control must contain memory attributes
● zone_to_area_mattr() is called to find appropriate free_area[order] in a given zone

Copyright (C) 2017 IBM Corporation 35

● NUMA Systems

● NUMA in Memory Management

● Coherent Device Memory

● Existing CDM Solutions

● Existing NUMA Design Limitations

● Need for Attribute based NUMA

● Hierarchical NUMA Proposal

● Conclusion

Copyright (C) 2017 IBM Corporation 36

Conclusion

● There may be other possible solutions with some pros and cons

● CDM and DRAM zones with memory attributes

● CDM and DRAM nodes (NODE_DATA) with memory attributes

● CDM and DRAM pageblocks (memory attribute types in line with migration types)

● The proposed idea here may not be the best possible solution

● The community should debate this proposal to reach at an optimal solution

● Industry trends suggest, going forward CDM will be provided my multiple vendors and OEMs

● Looking forward to build interest in the community to work towards finding a solution

●
Linux kernel should be ready ! Memory HW technologies are coming in fast :)

Copyright (C) 2017 IBM Corporation 37

Legal Statement

● This work represents the view of the authors and does not necessarily represent the view of the employers
(IBM Corporation).

● IBM and IBM (Logo) are trademarks or registered trademarks of International Business Machines in United
States and/or other countries.

● Linux is a registered trademark of Linux Torvalds.

● Other company, product and service names may be trademarks or service marks of others.

Copyright (C) 2017 IBM Corporation 38

References

● http://www-03.ibm.com/systems/in/power/hardware/e880/
● http://www.dell.com/in/business/p/poweredge-r930/pd
● http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=emr_na-c02497469
● https://www.supermicro.com.tw/products/system/7U/7088/SYS-7088B-TR4FT.cfm

● http://www-03.ibm.com/systems/in/resources/systems_power_hardware_e880_580x326.png
● http://www.dell.com/in/business/p/poweredge-r930/pd
● http://www.rasburytech.com/wp-content/uploads/2017/02/dl980.png
● https://www.supermicro.com/a_images/products/views/7088B-TR4FT_angle.jpg
● https://www.nextplatform.com/2015/05/04/ibm-scales-up-power8-iron-targets-in-memory/
● http://www.qdpma.com/systemarchitecture/StrategyShift.html

http://www-03.ibm.com/systems/in/power/hardware/e880/
http://www.dell.com/in/business/p/poweredge-r930/pd
http://h20564.www2.hpe.com/hpsc/doc/public/display?docId=emr_na-c02497469
https://www.supermicro.com.tw/products/system/7U/7088/SYS-7088B-TR4FT.cfm
http://www-03.ibm.com/systems/in/resources/systems_power_hardware_e880_580x326.png
http://www.dell.com/in/business/p/poweredge-r930/pd
http://www.rasburytech.com/wp-content/uploads/2017/02/dl980.png
https://www.supermicro.com/a_images/products/views/7088B-TR4FT_angle.jpg
https://www.nextplatform.com/2015/05/04/ibm-scales-up-power8-iron-targets-in-memory/
http://www.qdpma.com/systemarchitecture/StrategyShift.html

Copyright (C) 2017 IBM Corporation 39

Acronyms

VMA Virtual Memory Area
PFN Page Frame Number
PGDAT PGLIST_DATA

SMP Symmetric Multi Processing
NUMA Non Uniform Memory Access
HNUMA Hierarchical NUMA
DRAM Dynamic Random Access Memory
CDM Coherent Device Memory

HPC High Performance Computing
ERP Enterprise Resource Planning
CRM Customer Resource Management
RB Red Black (Tree)

Copyright (C) 2017 IBM Corporation 40

Thank You

Copyright (C) 2017 IBM Corporation 41

Backup

Copyright (C) 2017 IBM Corporation 42

NUMA Evolution

Copyright (C) 2017 IBM Corporation 43

Symmetric Multi Processing (SMP)

● Memory & compute intensive workloads benefit with single OS image on big SMP systems

● They utilize all cores & memory bandwidth with shared data structures

● They include enterprise apps like DB, CRM and HPC

● There has always been a need for bigger SMP systems for these kind of applications

● Building bigger SMP system with Single System Bus is complex and expensive

● Single System Bus design also has scalability limitations

● Then how computer system can scale up ?

CPU

System Bus

Memory I/O

Cache

Standard SMP system

CPU

Cache

CPU

Cache

CPU

Cache

Copyright (C) 2017 IBM Corporation 44

Non Uniform Memory Access (NUMA)

● NUMA is a design choice to avoid further complicating (expensive) Single System Bus design

● Single System Bus SMP design always had scalability problems

● NUMA is a logical follow up from Single Bus SMP design to accommodate more cores and memory

● NUMA has more than one system bus connected through high speed NUMA inter-connects

CPU CPU CPU CPU

System Bus

Memory I/O

CPU CPU CPU CPU

System Bus

Memory I/O

CPU CPU CPU CPU

System Bus

Memory I/O

CPU CPU CPU CPU

System Bus

Memory I/O

NUMA inter connects

Copyright (C) 2017 IBM Corporation 45

Existing NUMA Data Structures

Copyright (C) 2017 IBM Corporation 46

Memblock

● CONFIG_HAVE_MEMBLOCK_NODE_MAP decides if memblock has node information

● Memblocks are basic blocks of memory regions received from platform firmware

● memblock_add() adds a memory region into the system

● memblock_add_node() or memblock_set_node() adds node information into the memblock

● From memblock, NUMA information flows up the stack in the kernel

Copyright (C) 2017 IBM Corporation 47

Memory Section
● Contains mem_map information along with pageblock flags

● mem_section→section_mem_map contains memmap along with pfn

● mem_section→pageblock_flags contain flags for pageblock_nr_pages blocks

● Pageblock flag information is stored in zone→pageblock_flags (CONFIG_SPARSEMEM)

Copyright (C) 2017 IBM Corporation 48

Page

● page→flags contains NUMA information as well

● page_to_pfn() and pfn_to_page() mapping has to be fast (used in hot paths)

● If NODE_NOT_IN_PAGE_FLAGS is defined, page flags will not have NUMA information

● Instead it will be fetched from mem_section based table (which is always initialized)

● But page flags based page → nid direct mapping is always faster

Copyright (C) 2017 IBM Corporation 49

Pglist_data

● NUMA organization of memory starts at struct pglist_data (every NUMA node as got one)

● Always fetched by NODE_DATA(nid) from the core MM

● Contains all zones struct zone node_zones[MAX_NR_ZONES]

● Contains both the zonelists struct zonelist node_zonelists[MAX_ZONELISTS]

● On POWER

● struct pglist_data *node_data[MAX_NUMNODES] → NODE_DATA(node)

● initmem_init() → setup_node_data()

● On X86

● struct pglist_data *node_data[MAX_NUMNODES] → NODE_DATA(node)

● numa_register_memblks() → alloc_node_data()

Copyright (C) 2017 IBM Corporation 50

Zonelist
● Zonelists are used during memory allocation

● Helps in navigating NUMA for any allocation, should happen either for a node strictly or with fall backs

● Part of struct pglist_data (pgdat→node_zonelists[MAX_ZONELISTS])

● ZONELIST_FALLBACK contains zones of all nodes with a fallback order

● ZONELIST_NOFALLBACK contains zones of the same node, accessed only through __GFP_THISNODE

Copyright (C) 2017 IBM Corporation 51

pglist_data

ZONE_DMAZONE_DMA32ZONE_MOVABLE

free_area[0] free_list

MIGRATE_UNMOVEABLE

MIGRATE_MOVEABLE

MIGRATE_RECLAIMABLE

MIGRATE_PCTYPES

MIGRATE_HIGHATOMIC

MIGRATE_CMA

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

free_area[1] free_list

free_area[MAX_ORDER] free_list

MIGRATE_UNMOVEABLE

MIGRATE_MOVEABLE

MIGRATE_RECLAIMABLE

MIGRATE_PCTYPES

MIGRATE_HIGHATOMIC

MIGRATE_CMA

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

MIGRATE_UNMOVEABLE

MIGRATE_MOVEABLE

MIGRATE_RECLAIMABLE

MIGRATE_PCTYPES

MIGRATE_HIGHATOMIC

MIGRATE_CMA

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

....... pagepage page

free_area[2] free_list

free_area[N] free_list

ZONE_NORMAL

...............................

...............................

...............................

pglist_datapglist_data pglist_data

NODE 0 NODE 1 NODE 2 NODE .. NODE N

Memory NUMA Representation

Copyright (C) 2017 IBM Corporation 52

Sample Commercial NUMA Systems

Copyright (C) 2017 IBM Corporation 53

IBM POWER8 E880

Copyright (C) 2017 IBM Corporation 54

DELL Power Edge R930

Copyright (C) 2017 IBM Corporation 55

HP DL980

Copyright (C) 2017 IBM Corporation 56

Supermicro 7088B-TR4FT

Copyright (C) 2017 IBM Corporation 57

IBM POWER8 NUMA Diagram

Copyright (C) 2017 IBM Corporation 58

Intel Xeon E7400 NUMA Diagram

Copyright (C) 2017 IBM Corporation 59

NUMA CDM

● https://lkml.org/lkml/2016/10/24/19 (RFC V1)
● https://lkml.org/lkml/2016/11/22/339 (RFC V1.2)
● https://lkml.org/lkml/2017/1/29/198 (RFC V2)
● https://lkml.org/lkml/2017/2/8/329 (PATCH V1)
● https://lwn.net/Articles/720380/ (RFC from Balbir Singh)

LSFMM 2017

● https://lwn.net/Articles/717601/ (HMM and CDM)

HMM CDM

● https://lkml.org/lkml/2017/4/7/638 (RFC V1)
● https://lwn.net/Articles/725412/ (PATCH V2)
● https://lwn.net/Articles/727114/ (PATCH V3)
● https://lwn.net/Articles/727692/ (PATCH V4)

HMM

● https://lwn.net/Articles/726691/ (PATCH V24)
● https://lwn.net/Articles/731259/ (PATCH V25)

Relevant Community Discussions

https://lkml.org/lkml/2016/10/24/19
https://lkml.org/lkml/2016/11/22/339
https://lkml.org/lkml/2017/1/29/198
https://lkml.org/lkml/2017/2/8/329
https://lwn.net/Articles/720380/
https://lwn.net/Articles/717601/
https://lkml.org/lkml/2017/4/7/638
https://lwn.net/Articles/725412/
https://lwn.net/Articles/727114/
https://lwn.net/Articles/727692/
https://lwn.net/Articles/726691/
https://lwn.net/Articles/731259/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

