
Growing CPU register state
without breaking ABI (much)

Linux Plumbers 2017
Los Angeles, CA

Dave MarƟn <Dave.Martin@arm.com>

September 15, 2017

© 2017 Arm Limited



IntroducƟon

What am I doing here?

Arm recently published its next-generaƟon SIMD architecture:
the Scalable Vector Extension (SVE). [a-profile]

I’m wriƟng patches for it… [sve-patches], [sve-git]

Oops, the register state got large.

→ ABI breaks ahoy!

Other arches likely do / will have problems in this area too.

2 © 2017 Arm Limited



SVE

3 © 2017 Arm Limited



The SVE register set

32 vector registers Z0–Z31, each 128q bits
Low 128 bits of Zn alias Vn from ARMv8.

16 predicate registers P0–P15, each 16q bits

1 special-purpose predicate FFR, 16q bits

Maximum value of qmax determined by the hardware, 1 ≤ qmax ≤ 16

OS / firmware can also constrain q via system registers, 1 ≤ q ≤ qmax

That’s 546q bytes of user registers, i.e., up to 8736 bytes.
Might grow even larger in the future.

4 © 2017 Arm Limited



The SVE register set

V0 Z0

V1 Z1

V31 Z31

128q− 1 128(q− 1) 128 0

P0

P15

FFR

16q− 1 16(q− 1) 16 0

FPSR

FPCR
31 0

1 ≤ q ≤ 16

up to 8736 bytes total state

5 © 2017 Arm Limited



So what?

6 © 2017 Arm Limited



Affected ABI areas

Key ABI impacts I will focus on in this session:

Signal frame

ucontext

More straighƞorward areas (see backup slides):

ptrace: add a new regset (with some hacks)

coredumps: add user_regset.get_size() for regset size discovery

KVM: enumerate new regs in ioctl() interface.

7 © 2017 Arm Limited



Signal frame

8 © 2017 Arm Limited



Signal frame overview

Data structure encoding user task state during signals

Pushed on the user stack during signal delivery, popped by sigreturn.

Partly generic(ish), partly arch-specific.
POSIX says that the enƟre signal frame fits in MINSIGSTKSZ bytes:

A #define→ changing it breaks ABI.
Kernel definiƟon oŌen overridden by libc headers.
Excludes userspace compiler / libc overheads.

POSIX also specifies SIGSTKSZ, which includes ‘typical’ overheads, and is used more oŌen.
SƟll a fudge, and sƟll not extensible.

Userspace relies on these #defines for sizing thread and sigaltstack(2) stacks.

9 © 2017 Arm Limited



Arm64 signal frame today

generic(ish) rt_sigframe

siginfo

ucontext

SP

mcontext

arm64 sigcontext

integer regs

__reserved(4K)

arm64 extensions

size1 FPSIMD_MAGIC

floaƟng-point regs

size2 ESR_MAGIC

excepƟon syndrome
0 0

10 © 2017 Arm Limited



Extending arm64 sigcontext

arm64 extensions

size1 FPSIMD_MAGIC

floaƟng-point regs

size2 ESR_MAGIC

excepƟon syndrome
size3 EXTRA_MAGIC

size base addr

0 0

extra stack data

size4 SVE_MAGIC

0 0

SVE registers

11 © 2017 Arm Limited



New arm64 signal frame

siginfo

ucontext

extra data

SP

12 © 2017 Arm Limited



Architectures affected

Number-crunching extensions tend to add a lot of register state:
Arch extension Data size Official signal frame size
x86 AVX-512 2K 2K
power VSX 1K 2K–4K
arm64 SVE 0.5–8.5K 4K–5K
…

No common approach to this problem for now.

Generally, hack MINSIGSTKSZ / SIGSTKSZ and hope for the best…

13 © 2017 Arm Limited



Damage limitaƟon

If an arch lives long enough, it may eventually exceed its MINSIGSTKSZ.
For arm64, 4K seemed huge, but it’s not always enough for SVE. So:

→ Inhibit enlarged signal frames by default.

→ Turned on by selecƟng CPU features that need a larger frame.

→ For SVE, using vectors longer than 64 bytes may enlarge the frame.

14 © 2017 Arm Limited



ReporƟng the signal frame size to userspace

When features are enabled that require an enlarged signal frame, userspace needs a way to discover
the real frame size.
We could do this:

→ Add a new AT_MINSIGSTKSZ entry to the aux vector (thanks Will)

→ Fall back to MINSIGSTKSZ #define when absent

→ Fixed for the lifeƟme of a process:
must describe the maximum possible size on this hardware and kernel.

→ Could expose through POSIX sysconf(3) for a more portable interface.

15 © 2017 Arm Limited



ucontext

16 © 2017 Arm Limited



Ucontext

A task context abstracƟon, ‘task_struct for userspace’

More featureful than siglongjmp(3) and friends, supports full task switching (in theory)

Turned out that full portability is almost impossible

Largely superseded by proper threads

Some legiƟmate niche uses, like corouƟnes

Incorporates arch sigcontext definiƟon

Welded into the sigaction(2) API…

17 © 2017 Arm Limited



What to do about Ucontext?

Fixed-size structure with arch context data in the middle of it somewhere.
So, totally inextensible.

Copying ucontext_t objects can’t work properly if the signal frame is extended.

→ For arm64, make the reference to the extra context data a pointer to give a chance of
detecƟng copying.
→Might convince libc / POSIX folks to add proper support, if there’s consensus:

dupcontext() could copy the enƟre thing, etc.

→ Or try to jusƟfy leƫng ucontext finally die …?

18 © 2017 Arm Limited



Conclusion

19 © 2017 Arm Limited



Conclusion
Major register set extensions can be supported by Linux, but there are some pain points:

signal frame and ucontext are the most problemaƟc

→ inextensible by design

→ largely depends on luck whether an arch’s iniƟal signal frame has enough space.

ptrace regsets are a bit awkward, but can be extended without ABI breaks

→ NT_ARM_SVEmay be a useful template

If enough people care, we could push for:

→ common signal frame size reporƟng via AT_MINSIGSTKSZ

→ common libc interface for signal frame size via sysconf

→ suitable ucontext API addiƟons (or deprecate ucontext harder)

What should we require from new arches / extensions?
20 © 2017 Arm Limited



Discussion

21 © 2017 Arm Limited



Backup / Extra material

22 © 2017 Arm Limited



ptrace — background

ptrace regset API, PTRACE_GETREGSET, PTRACE_SETREGSET etc. much friendlier to
extensibility.

Easy to add new regsets.
SemanƟcs ill-defined in some areas:

size of a register
size of a regset
behaviour of short reads and writes

Already some ‘abuse’:
e.g., arm64 wedges 32-bit FPSR and FPCR into one 128-bit ‘register’ of PR_FPREG

But arch-specific knowledge needed in order to manipulate the register data anyway

→ these aren’t major problems in pracƟce.

23 © 2017 Arm Limited



ptrace for SVE

NT_ARM_SVE defined with a variable number of 128-bit pseudo-registers.
‘Register 0’ contains a fixed struct user_sve_header, encoding:

size of the whole regset
maximum possible size of the regset
SVE-specific metadata (current and maximum vector length, plus some flags)

Reading / wriƟng the header by itself is explicitly allowed:
Caller ran read the size, allocate memory, then read the whole regset.

Other arches could reuse this model if needed.

Not clear whether it’s worth formalising as a common model for variable-sized regsets (?)

24 © 2017 Arm Limited



ELF coredumps

A free giŌ from the core code!

An ELF note per thread is automaƟcally added to the coredump, for each regset the arch
defines.

Regset size is staƟcally determined

To be future-proof, theoreƟcal maximum size of NT_ARM_SVE is stupidly large:
roughly 1

4MB of padding in the coredump per thread

However, making the size dynamic seems preƩy non-invasive:

→ Add a .get_size()method to struct user_regset:

If NULL, size calculated staƟcally from .n and .size (as done currently)

If non-NULL, .get_size() returns the current size.

→ Should work for any other variable-sized regset in the future (?)

25 © 2017 Arm Limited



KVM

And finally:

Virtual CPU registers exposed to userspace via ioctls

(SVE support currently under construcƟon)

… but KVM_GET_REG_LIST, KVM_GET_ONE_REG, KVM_SET_ONE_REG quite friendly for
extensibility.

→ Userspace can save / restore without needing to understand individual registers at all.

For SVE:

Variable-size registers not naƟvely supported,
but register IDs don’t need to be assigned conƟguously:

→ Easy to leave space for future expansion.

26 © 2017 Arm Limited



References

[a-profile] Arm Architecture A-Profile SpecificaƟons
https://developer.arm.com/products/architecture/a-profile/docs

[sve-git] SVE Git tree on linux-arm.org
http://linux-arm.org/git?p=linux-dm.git;a=shortlog;h=refs/heads/
sve/v2
git://linux-arm.org/linux-dm.git sve/v2

[sve-patches] SVE v2 Linux patch posƟng
http://lists.infradead.org/pipermail/linux-arm-kernel/
2017-August/529575.html

27 © 2017 Arm Limited

https://developer.arm.com/products/architecture/a-profile/docs
http://linux-arm.org/git?p=linux-dm.git;a=shortlog;h=refs/heads/sve/v2
http://linux-arm.org/git?p=linux-dm.git;a=shortlog;h=refs/heads/sve/v2
http://lists.infradead.org/pipermail/linux-arm-kernel/2017-August/529575.html
http://lists.infradead.org/pipermail/linux-arm-kernel/2017-August/529575.html


Thanks for listening

The Arm trademarks featured in this presentaƟon are registered trademarks or

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights

reserved. All other marks featured may be trademarks of their respecƟve owners.

www.arm.com/company/policies/trademarks

© 2017 Arm Limited


	
	Introduction
	
	The SVE register set
	The SVE register set
	
	Affected ABI areas
	
	Signal frame overview
	Arm64 signal frame today
	Extending arm64 sigcontext
	New arm64 signal frame
	Architectures affected
	Damage limitation
	Reporting the signal frame size to userspace
	
	Ucontext
	What to do about Ucontext?
	
	Conclusion
	
	
	ptrace — background
	ptrace for SVE
	ELF coredumps
	KVM
	References
	

