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Why Huge Pages?

• Virtual memory == address translations
• TLB cache for quick lookups
• One page per TLB entry
• Bigger pages can mean fewer TLB misses



Huge Pages in Linux

• hugetlbfs
– The oldest method
– System config and application changes
– Large databases early (and current) users

• Transparent Huge Pages (THP)

– As the name says ‘transparent’

– Used without sys config or app changes



hugetlbfs history

• 2.5.36 kernel, September 2002
– Followed the everything is a file model
– Explicitly mount filesystem

• open and mmap files

• shmget(SHM_HUGETLB)

• mmap(MAP_HUGETLB)



Reservations

• page faults allocate hugetlbfs pages
• ENOSPC / ENOMEM == SIGBUS
• shmget() and mmap() reserve pages

– ENOMEM on error, faults guaranteed
# grep HugePages /proc/meminfo

HugePages_Total:    1024
HugePages_Free:     1024
HugePages_Rsvd:      512                   
HugePages_Surp:        0



Surplus Pages and Overcommit

• huge pages commonly preallocated
– kernel command line
– System init scripts

• nr_overcommit_hugepages

– dynamically allocated
• mmap() or page fault time
• no guarantees

– surplus_hugepages



Multiple Huge Page Sizes

• x86: 2M and 1G

• Powerpc: 512K, 1M, 2M, 8M, 16M, 1G, 16G
• Default huge page size

– Shown in /proc/meminfo
– Set on kernel command line

• /sys/kernel/mm/hugepages (system supp)

• shmget() and mmap() take size



libhugetlbfs

• An ‘easy’ way to use hugetlbfs
• library controlled by environment variables
• malloc, System V shared memory

– LD_PRELOAD and no application mods

• Program, text, data and bss

– Relink program for optimal benefit

– Segments ‘copied’ at program startup



Shared Page Tables

• Yes, PMDs can be shared:  IF
– You are using huge pages on x86 or arm64
– Of sufficient size and alignment: PUD (1G)

• Example: 1TB shared mapping, 10,000 mappings

– 4KB (PMD) per 1G

– 1TB = 1024G * 9,999 shared mappings

– Up to 39GB savings



Mount reservations

• Added in v4.1
• huge pages reside in global pools
• Can be taken by any user/program (WSP)
• filesystem mounts can reserve pages

– min_size=<value> mount option



fallocate support

• Added in v4.3
• preallocating pages is not exciting
• deallocating (hole punch) is interesting

– Can ‘release’ pages in hugetlbfs files
– madvise(MADV_REMOVE) if no fd



userfaultfd support

• Added in v4.11
• Catch access to fallocate holes (orig UC)
• QEMU post copy live migration (new UC)

– Now works with huge pages
– Performance boost for 2M pages
– GB pages too much network latency



Questions?
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