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Introduction

• Why do we want range locking?
‒ In ideal scenarios, enables parallelism for non-overlapping 

ranges.

‒ This can be the case for address space (mmap_sem), for 
example,  operating on independent regions.
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Introduction

• Why do we want range locking?
‒ In ideal scenarios, enables parallelism for non-overlapping 

ranges.

‒ This can be the case for address space (mmap_sem), for 
example,  operating on independent regions.

• With the caveat that the lock isn’t really a lock.
‒ But we call it so because it provides mutual exclusion
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Introduction
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Semantics

• Instead of regular CAS (counter) semantics, range 
serialization is given by tasks being added to a 
shared interval tree.
‒ Which in turn is an augmented red-black tree.
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Semantics
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Semantics

• Reference counting to account for overlapping 
ranges.
‒ Nodes that overlap without including current, whether it 

be lock() or unlock()..

‒ Task that is adding itself to the tree will block until it’s non-
zero.



9

Semantics

• Reference counting to account for overlapping 
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‒ Provides FIFO ordering. Ie: Assume lock is held by A at 
[a,n] and another thread B comes in at [g,z].
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Semantics

• Reference counting to account for overlapping 
ranges.
‒ Provides FIFO ordering. Ie: Assume lock is held by A at 
[a,n] and another thread B comes in at [g,z].

‒ Thus ref [a,n] = 0 and ref [g,z] = 1

‒ Thread C at [b,m] now also tries to acquire the lock (ref 
= 2)

‒ Thread A drops the lock, thus ref [g,z] = 0 and ref [b,m] = 1

‒ Therefore thread B gets the lock.
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Semantics

• Reference counting to account for overlapping 
ranges.
‒ For non overlapping ranges ordering is given by tree 

traversals (ie two tasks that are awoken).
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Semantics

• Reference counting to account for overlapping 
ranges.
‒ For non overlapping ranges ordering is given by tree 

traversals (ie two tasks that are awoken).

• Starvation wise, there is no lock stealing going and 
everything is serialized by the tree→lock.
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Semantics

• Reader/writer.
‒ Readers don’t account for other intersecting readers.

‒ Tag task_struct pointer (LSB) to differentiate.
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Semantics

• Requires the caller to setup the ranges before 
locking it. This is normally local and stack 
allocated.

• Provides the same calls than regular locks.

void range_write_lock(struct range_lock_tree *tree,
     struct range_lock *lock);

void range_write_unlock(struct range_lock_tree *tree,
      struct range_lock *lock);
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Semantics

struct range_rwlock myrange;

range_lock_init(&myrange, 10, 100);

range_write_lock(tree, &myrange);
/* do something cool */
range_write_unlock(tree, &myrange);
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range rwlock vs rw_semphore

• Performance wise a regular lock will always be 
faster than a range lock. It only helps if it can 
improve parallelism.
‒ Thus this comparison is really a worse case scenario…

‒ range_write_lock_full()
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range rwlock vs rw_semphore

• Range locks have no fastpath.
‒ lock xadd %rdx,(%rax)

‒ Range locking involves at least spin_lock() + 
spin_unlock() + some loads.
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range rwlock vs rw_semphore

• Range locks have no optimistic spinning.
‒ Can impact writer threads as they will block.
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range rwlock vs rw_semphore

• Range locks have no optimistic spinning.
‒ Can impact writer threads as they will block.

• Range locks do not favor writers over readers (or 
vice-versa).
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range rwlock vs rw_semphore

• Synthetic 1:1 results (4 core AMD write-only):
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range rwlock vs rw_semphore

• Synthetic 1:1 results (4 core AMD read-only):

2 4 8
0

2000

4000

6000

8000

10000

12000

14000

5930.7

9881.6

11633.2

5917.3

9540.2

11314.7

rwsem

range lock



25

range rwlock vs rw_semphore

• Synthetic 1:1 results (4 core AMD read/write):
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range rwlock vs rw_semphore

• Synthetic 1:1 results (240 core IvyBridge write-
only):
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range rwlock vs rw_semphore

• Synthetic 1:1 results (240 core IvyBridge write-
only):
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range rwlock vs rw_semphore

• Synthetic 1:1 results (240 core IvyBridge 
read/write):
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Red-Black Tree Optimization #1

• Fast interval tree intersections/overlaps
‒ Avoids O(logN) tree walks.
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Red-Black Tree Optimization #1

• We need the tree’s smallest start and largest end 
In O(1).
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Red-Black Tree Optimization #1
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Red-Black Tree Optimization #1

• root’s last-in-subtree for the largest value.

• Cache leftmost node (with the help of the caller, like 
everything else).
‒ rb_first_cached(cached_root)

‒ rb_insert_color_cached(node, cached_root, new)

‒ rb_erase_cached(node, cached_root)

• In v4.14.
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Red-Black Tree Optimization #2

• Threaded rbtrees
‒ Allows O(N) inorder traversals.

‒ Caveats are rb interfaces.
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Red-Black Tree Optimization #2

• Rbtrees have n+1 nil children pointers.
‒ These can be reused as threads.

‒ Threads are the prev/next inorder node.

‒ To not enlarge the data structure, tag the struct 
rb_node pointer (LSB) such that we can tell appart 
threads and nodes.
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Red-Black Tree Optimization #2

  /* Figure out where to put new node */

  while (*new) {

  ...

       parent = *new;

  if (result < 0)

  new = &((*new)->rb_left);

  else if (result > 0)

  new = &((*new)->rb_right);

  else

  return FALSE;

  }

  /* Add new node and rebalance tree. */

  rb_link_node(&data->node, parent, new);

  rb_insert_color(&data->node, root);
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Red-Black Tree Optimization #2

  /* Figure out where to put new node */

  while (*new) {

  ...

       parent = *new;

  if (result < 0)

  new = rb_left(*new);

  else if (result > 0)

  new = rb_right(*new);

  else

  return FALSE;

  }

  /* Add new node and rebalance tree. */

  rb_link_node(&data->node, parent, new);

  rb_insert_color(&data->node, root);
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Red-Black Tree Optimization #2

  /* Figure out where to put new node */

  while (*new) {

  ...

       parent = *new;

  if (result < 0)

  new = rb_left(*new);

  else if (result > 0)

  new = rb_right(*new);

  else

  return FALSE;

  }

  /* Add new node and rebalance tree. */

  rb_link_node(&data->node, parent, new);

  rb_insert_color(&data->node, root);
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TODO

• More real world workload testing.

• Get threaded rbtrees upstream.

• Think of ways to avoid tree->lock (probably 
very dangerous).

• Get range locking into the kernel.



40

Further Reading

• Latest patchset (v3): 
‒ https://lwn.net/Articles/722741/

• Range reader/writer locks for the kernel (article):
‒ https://lwn.net/Articles/724502/

https://lwn.net/Articles/722741/
https://lwn.net/Articles/724502/


Thank you.
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