
Kernel Range Reader/Writer Locking

Linux Plumbers Conference – September 2017. Los Angeles, CA.

Davidlohr Bueso <dave@stgolabs.net>
SUSE Labs.

mailto:dave@stgolabs.net

2

Agenda

1. Introduction

2. Semantics

3. Range lock vs rw_semaphore

4. Tree Optimizations

5. What’s left for upstreaming.

3

Introduction

• Why do we want range locking?
‒ In ideal scenarios, enables parallelism for non-overlapping

ranges.

‒ This can be the case for address space (mmap_sem), for
example, operating on independent regions.

4

Introduction

• Why do we want range locking?
‒ In ideal scenarios, enables parallelism for non-overlapping

ranges.

‒ This can be the case for address space (mmap_sem), for
example, operating on independent regions.

• With the caveat that the lock isn’t really a lock.
‒ But we call it so because it provides mutual exclusion

5

Introduction

6

Semantics

• Instead of regular CAS (counter) semantics, range
serialization is given by tasks being added to a
shared interval tree.
‒ Which in turn is an augmented red-black tree.

7

Semantics

8

Semantics

• Reference counting to account for overlapping
ranges.
‒ Nodes that overlap without including current, whether it

be lock() or unlock()..

‒ Task that is adding itself to the tree will block until it’s non-
zero.

9

Semantics

• Reference counting to account for overlapping
ranges.
‒ Provides FIFO ordering. Ie: Assume lock is held by A at
[a,n] and another thread B comes in at [g,z].

10

Semantics

• Reference counting to account for overlapping
ranges.
‒ Provides FIFO ordering. Ie: Assume lock is held by A at
[a,n] and another thread B comes in at [g,z].

‒ Thus ref [a,n] = 0 and ref [g,z] = 1

11

Semantics

• Reference counting to account for overlapping
ranges.
‒ Provides FIFO ordering. Ie: Assume lock is held by A at
[a,n] and another thread B comes in at [g,z].

‒ Thus ref [a,n] = 0 and ref [g,z] = 1

‒ Thread C at [b,m] now also tries to acquire the lock (ref
= 2)

12

Semantics

• Reference counting to account for overlapping
ranges.
‒ Provides FIFO ordering. Ie: Assume lock is held by A at
[a,n] and another thread B comes in at [g,z].

‒ Thus ref [a,n] = 0 and ref [g,z] = 1

‒ Thread C at [b,m] now also tries to acquire the lock (ref
= 2)

‒ Thread A drops the lock, thus ref [g,z] = 0 and ref [b,m] = 1

13

Semantics

• Reference counting to account for overlapping
ranges.
‒ Provides FIFO ordering. Ie: Assume lock is held by A at
[a,n] and another thread B comes in at [g,z].

‒ Thus ref [a,n] = 0 and ref [g,z] = 1

‒ Thread C at [b,m] now also tries to acquire the lock (ref
= 2)

‒ Thread A drops the lock, thus ref [g,z] = 0 and ref [b,m] = 1

‒ Therefore thread B gets the lock.

14

Semantics

• Reference counting to account for overlapping
ranges.
‒ For non overlapping ranges ordering is given by tree

traversals (ie two tasks that are awoken).

15

Semantics

• Reference counting to account for overlapping
ranges.
‒ For non overlapping ranges ordering is given by tree

traversals (ie two tasks that are awoken).

• Starvation wise, there is no lock stealing going and
everything is serialized by the tree→lock.

16

Semantics

• Reader/writer.
‒ Readers don’t account for other intersecting readers.

‒ Tag task_struct pointer (LSB) to differentiate.

17

Semantics

• Requires the caller to setup the ranges before
locking it. This is normally local and stack
allocated.

• Provides the same calls than regular locks.

void range_write_lock(struct range_lock_tree *tree,
 struct range_lock *lock);

void range_write_unlock(struct range_lock_tree *tree,
 struct range_lock *lock);

18

Semantics

struct range_rwlock myrange;

range_lock_init(&myrange, 10, 100);

range_write_lock(tree, &myrange);
/* do something cool */
range_write_unlock(tree, &myrange);

19

range rwlock vs rw_semphore

• Performance wise a regular lock will always be
faster than a range lock. It only helps if it can
improve parallelism.
‒ Thus this comparison is really a worse case scenario…

‒ range_write_lock_full()

20

range rwlock vs rw_semphore

• Range locks have no fastpath.
‒ lock xadd %rdx,(%rax)

‒ Range locking involves at least spin_lock() +
spin_unlock() + some loads.

21

range rwlock vs rw_semphore

• Range locks have no optimistic spinning.
‒ Can impact writer threads as they will block.

22

range rwlock vs rw_semphore

• Range locks have no optimistic spinning.
‒ Can impact writer threads as they will block.

• Range locks do not favor writers over readers (or
vice-versa).

23

range rwlock vs rw_semphore

• Synthetic 1:1 results (4 core AMD write-only):

2 4 8
0

1000

2000

3000

4000

5000

6000

7000

4198.5

6036.8
6245.6

4199.1

6004.9
6229.3

rwsem

range lock

24

range rwlock vs rw_semphore

• Synthetic 1:1 results (4 core AMD read-only):

2 4 8
0

2000

4000

6000

8000

10000

12000

14000

5930.7

9881.6

11633.2

5917.3

9540.2

11314.7

rwsem

range lock

25

range rwlock vs rw_semphore

• Synthetic 1:1 results (4 core AMD read/write):

2

4

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

1744.8

1662.5

1761

1744.8

1278

1426

1740.2

1321.5

1417

1022.5

1243.5

1398

rwsem-wr

rwsem-rd

range-wr

range-rd

26

range rwlock vs rw_semphore

• Synthetic 1:1 results (240 core IvyBridge write-
only):

120 240 480
5600

5800

6000

6200

6400

6600

6800

7000

6844.5

6292.5

6164.8

6070.5 6099
6062.3

rwsem

range lock

27

range rwlock vs rw_semphore

• Synthetic 1:1 results (240 core IvyBridge write-
only):

120 240 480
0

50000

100000

150000

200000

250000

300000

136860.4

235297.5

272683

138052.2

232099.1

256539.2

rwsem

range lock

28

range rwlock vs rw_semphore

• Synthetic 1:1 results (240 core IvyBridge
read/write):

120

240

480

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

4658.1

3971.3

4112.7

1108.7

1038.8

1277.4

3203.6

2282.1

2353.1

1852.8

1856.5

1551.5

rwsem-wr

rwsem-rd

range-wr

range-rd

29

Red-Black Tree Optimization #1

• Fast interval tree intersections/overlaps
‒ Avoids O(logN) tree walks.

30

Red-Black Tree Optimization #1

• We need the tree’s smallest start and largest end
In O(1).

31

Red-Black Tree Optimization #1

32

Red-Black Tree Optimization #1

33

Red-Black Tree Optimization #1

• root’s last-in-subtree for the largest value.

• Cache leftmost node (with the help of the caller, like
everything else).
‒ rb_first_cached(cached_root)

‒ rb_insert_color_cached(node, cached_root, new)

‒ rb_erase_cached(node, cached_root)

• In v4.14.

34

Red-Black Tree Optimization #2

• Threaded rbtrees
‒ Allows O(N) inorder traversals.

‒ Caveats are rb interfaces.

35

Red-Black Tree Optimization #2

• Rbtrees have n+1 nil children pointers.
‒ These can be reused as threads.

‒ Threads are the prev/next inorder node.

‒ To not enlarge the data structure, tag the struct
rb_node pointer (LSB) such that we can tell appart
threads and nodes.

36

Red-Black Tree Optimization #2

 /* Figure out where to put new node */

 while (*new) {

 ...

 parent = *new;

 if (result < 0)

 new = &((*new)->rb_left);

 else if (result > 0)

 new = &((*new)->rb_right);

 else

 return FALSE;

 }

 /* Add new node and rebalance tree. */

 rb_link_node(&data->node, parent, new);

 rb_insert_color(&data->node, root);

37

Red-Black Tree Optimization #2

 /* Figure out where to put new node */

 while (*new) {

 ...

 parent = *new;

 if (result < 0)

 new = rb_left(*new);

 else if (result > 0)

 new = rb_right(*new);

 else

 return FALSE;

 }

 /* Add new node and rebalance tree. */

 rb_link_node(&data->node, parent, new);

 rb_insert_color(&data->node, root);

38

Red-Black Tree Optimization #2

 /* Figure out where to put new node */

 while (*new) {

 ...

 parent = *new;

 if (result < 0)

 new = rb_left(*new);

 else if (result > 0)

 new = rb_right(*new);

 else

 return FALSE;

 }

 /* Add new node and rebalance tree. */

 rb_link_node(&data->node, parent, new);

 rb_insert_color(&data->node, root);

39

TODO

• More real world workload testing.

• Get threaded rbtrees upstream.

• Think of ways to avoid tree->lock (probably
very dangerous).

• Get range locking into the kernel.

40

Further Reading

• Latest patchset (v3):
‒ https://lwn.net/Articles/722741/

• Range reader/writer locks for the kernel (article):
‒ https://lwn.net/Articles/724502/

https://lwn.net/Articles/722741/
https://lwn.net/Articles/724502/

Thank you.

42

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

