
Agenda

 About us
 Why para-virtualize RDMA
 Project overview
 Open issues
 Future plans

 2

About us

 Marcel from KVM team in Redhat
 Yuval from Networking/RDMA team in Oracle
 This is a shared-effort open source project to

implement a paravirt RDMA device.
 We implement VMware’s pvrdma device on QEMU

since it save us time (guest drivers and lib)

 3

Why para-virtualize RDMA

 Make Guests device-agnostic while leveraging
hw capabilities

 SRIOV becomes optional (by using multiple
GIDs)

 Migration support
 Memory overcommit (without hw support)
 Fast build of testing cluster

 4

Overview
QEMU

VM

Kernel

HW
RoCE device

PF VF VF VF netdev

ETH

rxe
Ib device

PVRDMA device

PVRDMA driver

Func1: RoCE Func0: ETH

ETH

netdev

TAP

ETH

 5

Expected performance

 Comparing:
 Ethernet virtio NICs (state of the art para-virt)
 PVRDMA RoCE with soft Roce backend
 PVRDMA RoCE with Phys RDMA VF.

 Looking for throughput of small/large packets

 6

PCI registers

BAR 0: MSIX

BAR 1: Regs

BAR 2: UAR

Vec0: RING EVT | Vec1: Async EVT | Vec3: Cmd EVT

VERSION | DSR | CTL | REQ | ERR | ICR | IMR | MAC

QP_NUM | SEND|RECV || CQ_NUM | ARM|POLL

 7

PCI registers – BAR 1
BAR 1: Regs

VERSION | DSR | CTL | REQ | ERR | ICR | IMR | MAC

 Version
 DSR: Device Shared Region (command channel)

 CMD slot address
 RESPONSE slot address
 Device CQ ring

 CTL
 Activate device
 Quiesce
 Reset

 REQ
 Execute command at CMD slot
 The result will be stored in RESPONSE slot

 ERR
 Error details

 IMR
 Interrupt mask

 8

PCI registers – BAR 2

BAR 2: UAR

QP_NUM | SEND|RECV || CQ_NUM | ARM|POLL

 QP operations
- Guest driver writes to QP offset (0) QP num and op mask
- The write operation ends after the operation is sent to
 the backend device

 CQ operations
- Guest driver writes to CQ offset (4) CQ num and op mask
- The write operation ends after the command is sent to
 the backend device

 Only one command at a time

 9

 All resources are “virtualized” (1-1 mapping with backend dev)
 PDs, QPs, CQs,…

 The pvrdma device shares the resources memory allocated by
the guest driver by means of a “shared page directory”

Resource manager

VM

Memory

QP

Rcv

CQ

Driver

Host

QP Page
directory

CQ Page
directory

QEMU

CMD Channel (DSR) / Info passed in Create QP/CQ

CQ Page
directory

QP Page
directory

HW

Virt
QP

Virt
CQ

HW
CQ

HW
QP

Snd

 10

Flows – Create CQ

 Guest driver
 Allocates pages for CQ ring
 Creates page directory to hold CQ ring's pages
 Initializes CQ ring
 Initializes 'Create CQ' command object (cqe, pdir etc)
 Copies the command to 'command' address (DSR)
 Writes 0 into REQ register

 Device
 Reads request object from 'command' address
 Allocates CQ object and initialize

 CQ ring based on pdir
 Creates backend(HW) CQ
 Writes operation status to ERR register
 Posts command-interrupt to guest

 Guest driver
 Reads HW response code from ERR register

 11

Flows – Create QP

 Guest driver
 Allocates pages for send and receive rings
 Creates page directory to hold the ring's pages
 Initializes 'Create QP' command object (max_send_wr, send_cq_handle,

recv_cq_handle, pdir etc)
 Copies the object to 'command' address
 Writes 0 into REQ register

 Device
 Reads request object from 'command' address
 Allocates QP object and initialize

 Send and recv rings based on pdir
 Send and recv ring state

 Creates backend QP
 Writes operation status to ERR register
 Posts command-interrupt to guest

 Guest driver
 Reads HW response code from ERR register

 12

Flows – Post receive

 Guest driver
 Initializes a wqe and place it on recv ring
 Writes to qpn|qp_recv_bit (31) to QP offset in UAR

 Device
 Extracts qpn from UAR
 Walks through the ring and do the following for each wqe

 Prepares backend CQE context to be used when receiving
completion from backend (wr_id, op_code, emu_cq_num)

 For each sge prepares backend sge; maps the dma address to
qemu virtual address

 Calls backend's post_send

 13

Flows – Process completion

 A dedicated thread is used to process backend events
 At initialization it attach to device and create communication

channel
 Thread main loop:

 Polls completion
 Unmaps sge's virtual addresses
 Extracts emu_cq_num, wr_id and op_code from context
 Writes CQE to CQ ring
 Writes CQ number to device CQ
 Sends completion-interrupt to guest
 Deallocates context
 Acks the event (ibv_ack_cq_events)

 14

Open issues

 RDMA CM support
 Guest memory registration
 Migration support
 Memory overcommit support
 Providing GIDs to guests

 15

Open issues (cont)

 RDMA CM support
 Emulate QP1 at QEMU level
 Modify RDMA CM to communicate with QEMU

instances:
 Pass incoming MADs to QEMU
 Allow QEMU to forward MADs

 What would be the preferred mechanism?

 16

Open issues (cont)

 Guest memory registration
 Guest userspace:

 Register memory region verb accept only a single VA
address specifying both the on-wire Key and a memory
range.

 Guest kernels:
 In-kernel code may need to register all memory (ranges

not used are not accessed → kernel is trusted)
 Memory hotplug changes present ranges

 17

Open issues (cont)

 Migration support
 Moving QP numbers – ensure same QP numbers on

destination
 Memory tracking

 Migration requires detection of hw accesses to pages
 Maybe we can avoid the need for it

 Moving QP state
 How QP should behave during migration , some “busy

state”
 Network update/packet loss recovery

 Can the system recover from some packet loss?

 18

Open issues (cont)

 Memory overcommit support
 Do we really need “on-demand” pages?

 Everything goes through QEMU which is a User Level
app in host that fw the request to host kernel.

 Did we miss anything?

 19

Open issues (cont)

 Providing GIDs to guests (multi-gid)
 Instead of coming up with extra ipv6 addresses,

would be better to set the host GID based on guest
ipv6 address.

 No API for doing that from user level.

 20

Future plans

 Submit VMware’s PVRDMA device
implementation to QEMU (and later add RoCE
v2 support)

 Improve performance
 Move to a virtio based RDMA device

 We would like to agree on a clean design:
 Virtio queue for the command channel
 Virtio queue for each Rcv/Send/Cq buffer
 Anything else?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

