
Configuration Request Retry
Status (CRS) Handling

Sinan Kaya

okaya@codeaurora.org

Few words about me

• Sr. Staff Engineer @ Qualcomm Datacenter Technologies

• Focus areas
• Arm64 Servers

• PCI Express

• ACPI

• DMA Engine

• More and more low level stuff everyday

PCIe Device Layers

PCIe Core
Logic Interface

Device Core

PCIe Device A

TX RX

Data Link Layer

Physical Layer

Transaction Layer

PCIe Core
Logic Interface

Device Core

PCIe Device B

TX RX

Data Link Layer

Physical Layer

Transaction Layer

Link

Requests & Completions

Root Complex or
Endpoint

Software

Error Chk, ACK/NAK, Pwr
Mgmt, Flow Ctrl

Tx/Rx, Link Training,
Clock Compensation, Low
Pwr/Idle

Differential signals,
cables, traces

https://www.mindshare.com/files/ebooks/PCI%20Express%20System%20Architecture.pdf

PCIe Transaction Layer

• PCIe defines four types of transactions:
• Memory

• used for data transfer

• I/O
• used for data transfer

• Configuration
• device configuration

• Message
• event signaling

Requests and Completions

• Request Types categorized as

• Posted

• Memory write

• Messages

• Non-posted

• Config/IO Write

• AtomicOp Request

• Read request

CRS Definition

• Some devices take long time to initialize
following a reset.

• Device responds with CRS status code during
this period for any configuration request
• Meaning please try again later

Configuration Read

Completion with CRS

Configuration Read

Completion with CRS

Configuration Read

Successful Completion

CRS Requirement

• Rev 3.1 Sec 2.3.1 Request Handling Rules

• “Valid reset conditions after which a device is permitted to return CRS
are:
• Cold, Warm, and Hot Resets

• FLRs

• A reset initiated in response to a D3hot to D0 uninitialized device state
transition”

CRS Handling Rules

• CRS support in RC is mandatory

• PCIe spec defines CRS Software Visibility capability in Root Capabilities
register.
• If supported by HW, OS gets to know when a device is not ready by reading a value of

0x0001 for vendor id register. OS polls while configuration read is pending
• If not supported, HW generally retries the vendor id request until CRS condition is

cleared
• Possible deadlock if HW firmware initializes during OS boot via firmware interface
• PCI read is stuck and code never makes that far into the firmware loading phase
• Spec says a root port can limit the number of retries.

• Linux enables CRS visibility by default in pci_scan_bridge() and relies on
graceful polling.

Current Status and To-do

• pci_bus_read_dev_vendor_id() knows how to deal with CRS

• As of 4.14 kernel, Linux
• handles CRS during

• Probe

• FLR (indirectly by extended polling period in pci_flr_wait())

• does not handle
• Warm/hot reset (secondary bus reset after pci_reset_bridge_secondary_bus())

• D3-D0 transition

CRS following Warm Reset
int pci_try_reset_bus(struct pci_bus *bus)
{

int rc;

rc = pci_bus_reset(bus, 1);
if (rc)

return rc;

pci_bus_save_and_disable(bus);

if (pci_bus_trylock(bus)) {
might_sleep();
pci_reset_bridge_secondary_bus(bus->self);
pci_bus_unlock(bus);

} else
rc = -EAGAIN;

pci_bus_restore(bus);

return rc;
}

Existing Proposals to Fix Warm Reset

• Facts.
• Secondary bus reset is a concept that comes from standard PCI
• Secondary bus reset is a broadcast message to all children under this bus
• Hot reset messages gets forwarded to all downstream ports by switches
• CRS is a PCIe concept
• There can only be one device on a PCIe bus due to its serial bus structure

• Proposals
• Initial patch posted on the maillist was too aggressive.

• It read the vendor id of all children devices and created a function similar to walk_bus
due to pci device link lists not being set up by the time it was called

• Another patch was to get rid of the bus walk and move
pci_bus_read_dev_vendor_id() calls into pci_bus_restore() function

My questions

• Where do we go from here?

• How do we fix D3->D0 case?
• Is there a concern with extended sleep times (up to 60 seconds)

• Any other use case for CRS?

