
Improving JVM Application Migration and 
Profiling with Checkpoint/Restore

Rodrigo Bruno, Paulo Ferreira

rbruno@gsd.inesc-id.pt, paulo.ferreira@inesc-id.pt

INESC-ID - Instituto Superior Técnico, ULisboa

Checkpoint/Restore - LinuxPlumbers’17 - Los Angeles

mailto:rbruno@gsd.inesc-id.pt
mailto:paulo.ferreira@inesc-id.pt


About Me
PhD student at University of Lisbon

Supervised by Prof. Paulo Ferreira

Researcher at INESC-ID

Work on improving JVM ability to adapt to Big Data workloads

JVM live migration

Reduce JVM application latency due to Garbage Collection

Contributed to CRIU with remote images

Collaborations/Interships: Feedzai, Jelastic

Now at Microsoft Research (internship) hacking the nouveau dev. driver



This talk
Research use-cases for Checkpoint-Restore

● Runtime aware live migration
○ ALMA (published on Middleware’16, Trento)

● Efficient Application Objects Lifetime Profiler
○ POLM2 (to appear on Middleware’17, Las Vegas)



ALMA - JVM Live Migration

POLM2 - Efficient Application Objects Lifetime Profiler



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



2

JVM Live Migration (real scenario)



3

Application Live Migration

● Migration should be as fast as possible
○ Small snapshots

● Many platforms support system-vm live migration
○ many processes plus the kernel are migrated

● Even if only one JVM is migrated parts the memory space are 
unnecessary
○ Memory locations with no live objects which are kept by 

the runtime environment.



ALMA - Key Insights

6

● Migrate only the process (JVM)
■ avoid kernel, other processes, etc;

● Use GC to reduce the snapshot size;

● Dynamically minimize the size of the memory to migrate
■ migrate only live objects
■ only collect regions which can be collected faster than 

transmitted through the network.

This leads to small (with almost only live data) snapshots.



ALMA - Collection Set

10

Collect regions (memory blocks) that can be collected 
faster than transmitted through the network:

● Without collection, migration cost is X

● With collection, migration cost is X’ + GCCost

X > X’ + GCCost



ALMA - Migration Workflow

11

Steps:

1. Prepare Snapshot

2. Build and Collect CS (Migr. Aware GC)

3. Return Free Mappings

4. Send Free Mappings to Coordinator

5. Checkpoint JVM

6. Send Snapshot

7. Stop JVM, incremental snapshot

8. Send final snapshot

9. Restore JVM from snapshot.



ALMA - Architecture

12

Components:

● Application: target application to migrate;

● Agent: analyzes the JVM;

● Coordinator: coordinates migration;

● Dump: takes JVM snapshots;

● Img Proxy: sends snapshot;

● Img Cache: caches snapshot;

● Restore: restores JVM from snapshots;



ALMA - Implementation

13

● ALMA augmented HotSpot 8 to support Migration Aware GC;

● Coordinator is implemented by extending CRIU to support 
remote migration. ALMA added two new components to CRIU:

○ Image Proxy - sends snapshot to the destination site;

○ Image Cache - caches snapshot in the destination site;



ALMA - Evaluation

14

● Evaluate ALMA’s performance compared to:

○ CRIU - Checkpoint and Restore for Linux;

○ JAVMM (Hou et. al, 2015) - Extends Xen to migrate Java 
applications. It simply collects the young generation before 
migration;

○ ALMA-PS - Similar to JAVMM but based on CRIU.

● Environment:
○ OpenStack VMs with 4vCPUs and 4GB RAM
○ DaCapo and SpecJVM2008 benchmark suites



Evaluation - Application Downtime (seconds)

16

DaCapo

SPECjvm2008

The Smaller 
the Better!

The Smaller 
the Better!



Evaluation - Total Migration Time (seconds)

17

DaCapo

SPECjvm2008

The Smaller 
the Better!

The Smaller 
the Better!



Evaluation - Network Bandwidth Usage (MBs)

19

DaCapo

SPECjvm2008

The Smaller 
the Better!

The Smaller 
the Better!



ALMA - Summary

20

● ALMA offers efficient migration of Java server applications
○ by selectively avoiding garbage when it pays off
○ by ignoring unmodified memory pages
○ by migrating only the target process
○ without requiring changes to applications

■ Only the agent and runtime are changed

● ALMA’s implementation is based on OpenJDK and CRIU;
○ Code is available at: github.com/rodrigo-bruno/alma

● ALMA outperforms current solutions in all evaluated metrics

http://github.com/rodrigo-bruno/alma


ALMA - ALMA - JVM Live Migration

POLM2 - Efficient Application Object Lifetime Profiler



2

JVM Memory Profiling

● Why?
○ Analyzing memory leaks in GC managed languages
○ Analyze application allocation profiles

■ Object lifetimes, size, …
■ Etc…

● Most profilers either sample memory or do full heap dumps 
(using jmap) resulting in
○ Uncomplete profiling data (only consider a sample)
○ Massive performance overhead due to full heap dumps



2

POLM2 - Key Insights

● Create full heap dumps
○ That can be analyzed offline

● Heap dumps are incremental
○ Do not include unmodified memory pages

● Heap dumps avoid garbage
○ Pages that contain no live objects



2

Efficient Application Object Lifetime Profiler



2

POLM2 - Implementation

● CRIU is used to implement the Dumper component

● CRIU is able to iteratively create snapshots
○ Which result in very fast incremental snapshots

● OpenJDK patched to use MADVISE syscall to mark as 
“NO_NEED” pages that contain no live objects
○ Pages are marked after each GC cycle
○ CRIU ignores this pages

■ Resulting in a shapshot that contains only live objects



2

POLM2 - Evaluation

● Compare POLM2 snapshots (using CRIU) with jmap

● Big Data Platforms & Workloads:
○ Cassandra (Key-Value Store)

● YCSB workloads
○ Lucene (In-Memory Indexing Tool)

● Read/Write transactions on Wikipedia dump
○ GraphChi (Graph Processing Engine)

● Twitter graph dump (42M vertexes, 1.5B edges) 
○ PageRank
○ Connected Components



Evaluation - Snapshot Time (norm to jmap)

16

DaCapo The Smaller 
the Better!



Evaluation - Snapshot Size (norm to jmap)

16



Summary

20

● C/R is a powerful tool that has many interesting use-cases
○ Efficient runtime-aware migration
○ Efficient runtime-aware application profiling

● C/R at process level allows more fine grained control over 
what resources are being migrated

● Open problems:
○ Security - efficiently move processes/containers with 

sensitive data
○ Local Data - efficiently move local resources such as files
○ ...



Thank you for your time.
Questions?

Rodrigo Bruno
email: rodrigo.bruno@tecnico.ulisboa.pt
webpage: www.gsd.inesc-id.pt/~rbruno
github: github.com/rodrigo-bruno

mailto:rodrigo.bruno@tecnico.ulisboa.pt
http://www.gsd.inesc-id.pt/~rbruno
http://github.com/rodrigo-bruno/alma

