
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Data Engineering and Analytics

Measuring Code Review in the Linux Kernel

Başak Erdamar

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Data Engineering and Analytics

Measuring Code Review in the Linux Kernel

Vermessung von Code Reviews im Linux
Kernel

Author: Başak Erdamar
Supervisor: Prof. Jens Großklags, Ph.D.
Advisor: Fabian Franzen, M.Sc.
Submission Date: 15.03.2021

I confirm that master’s thesis is my own work and I have documented all sources and material
used.

Munich, 15.03.2021 Başak Erdamar

Acknowledgments

I would like to thank Lukas Bulwahn for extensive feedback and discussions. I especially
thank Anmol Singh for her guidance and insights. I thank the participants of the ELISA
Workshop for their inputs and feedback. I also thank Shuah Khan for her insights on the
Linux kernel development process. I thank Ralf Ramsauer for his technical guidance.

Abstract

The Linux kernel development is a prominent example of software development at large
scale, i.e., a large code base, a large number of individual contributors, a large organisational
structure for integrating changes and a public code review activity open to all peers and
stakeholders. The review process data is made available through public e-mail archives, which
enables access to information about the process including the last few years of development.

There is no defined measure of error proneness of code changes in the Linux kernel.
Nevertheless, public availability of the review process offers many tools to analyze the depth
of investigation that each chunk of code goes through ahead of being integrated into the
Linux kernel mainline. This thesis tries to answer the question of whether the review process
provides enough information to determine the resulting software errors. For this purpose,
it considers various variables to establish code review depth and quality. By doing so, it
investigates whether the lack of in-depth review indicates potential errors after integration, in
an attempt to develop a measure of software development quality. This software development
quality measure could be used as input for assessing software security risks.

Throughout the development process usage of various emails and commit message tags
are encouraged to be used, as well as complying with the patch submission and review
guidelines[1]. This thesis investigates compliance with these guidelines in the review process,
by doing so, attempts to construct relations with the resulting security risks in the Linux
kernel.

The resources for the investigation includes commit messages in the Linux kernel and
review emails. These resources are provided by PaStA tool in a structured manner, which this
thesis uses for data mining purposes. These resources are then utilized to construct variables
that potentially define the review process.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. On this thesis . 1
1.2. Further Reading . 2

2. Research Questions 3

3. Authoring Activity 4
3.1. Comparing Author Activity in Kernel . 4
3.2. One Time Committers in the Linux Kernel . 6
3.3. Author Activity Area . 7

4. Maintainers 12
4.1. Authoring activity by maintainers . 12
4.2. Review activity . 14

5. Patches 16
5.1. Patch components . 16
5.2. Individual Mailing Lists . 19
5.3. Individual Sections . 23

6. Bots 25
6.1. Comparing Bot Activity with Human Activity 25
6.2. Bot Activity Across Mailing Lists . 26

7. Conclusion 29

A. Clustering Developers 30

B. Clustering Patches Using Mailing Lists 31

C. Clustering Patches Using Maintainer Sections 32

List of Figures 33

List of Tables 35

v

Contents

Bibliography 36

vi

1. Introduction

1.1. On this thesis

Each patch in the Linux kernel development process goes through certain steps before
being integrated into the Linux kernel. A patch is typically submitted to a relevant mailing
list once it is designed and developed by its author. Early review by other developers on the
mailing lists happens at this step. Next, a patch is integrated into relevant kernel maintainer’s
integration tree. Once it is integrated, it moves through more comprehensive maintainer
trees, until it is integrated into the mainline. Wider exposure happens on this last part, as the
potential problems about the patch is discovered through integration [2].

This thesis looks into various factors which can impact the amount of review in the early
review step mentioned above. Number of responses is used as a measure of the extent of
review. Figure 1.1 shows the log-scaled distribution of the number of unique responses over
patches that were eventually included in the repository, for the kernel releases v5.0 to v5.8.
Throughout this thesis, the reasons behind this distribution is investigated.

Figure 1.1.: Distribution of number of responses

1

1. Introduction

1.2. Further Reading

Reader can find more extensive information on Linux kernel development process from
its documentation website, kernel.org/doc/. Specifically, detailed guidelines about the
development and review process are provided under Working with the kernel development
community topic.

Annual reports, which contain more statistics about the activities of the Linux Foundation
can be found on linuxfoundation.org.

Statistical testing and visualization tools used in this thesis can be found on scipy.org. The
library used for machine learning algorithms can be found on scikit-learn.org. The mailing
list archives which were used for the analysis were mined and structured with PaStA tool,
which can be found on github.com/lfd/PaStA.

2

https://www.kernel.org/doc/html/latest/
https://linuxfoundation.org/en/resources/publications/
www.scipy.org
https://scikit-learn.org/stable/
https://github.com/lfd/PaStA

2. Research Questions

We hypothesize that, who the patch author is and where he or she is active impacts the
number of review emails he or she receives. For this purpose, we state the following questions:

• Does the number of responses increase as the patch developer is more experienced?

• Do maintainers get fewer or more responses than others, when they author a patch?

• Do patch developers who have previously been active in some areas of the kernel get
more responses than developers who have been active in other areas?

We also investigate various characteristics of the patches themselves; such as files, sections
and mailing lists. For this purpose we state the following questions:

• Does the number of responses increase or decrease with the number of files a patch
proposes to change?

• Does the number of responses increase or decrease with the number of maintainer
sections to which changed files belong to?

• Does a patch get more responses if it is submitted to more mailing lists?

• Do some mailing lists or maintainer sections lead to larger numbers of responses than
others?

3

3. Authoring Activity

For this chapter, patches between January 2018 and August 2020 and releases between v5.0
to v5.8 are considered. Developer statics active months, commits and last associations are
gathered separately using the gitdm tool and the complete git history until the release v5.8.

3.1. Comparing Author Activity in Kernel

In this section, we attempt to associate developer competence with the amount of reviews a
developer’s patches receive.

The gitdm tool provides statistics on developers and commits based on the git history of
the repository given [3]. The following statistics were derived from the tool using the git
history of the Linux kernel from the start to the release v5.8. The tool also provides mapping
from people to companies given a configuration file [4].

Sasha Levin and the commits he has authored has been excluded from the results in
figure 3.1 and figure 3.2 because of his extraordinary activity. Furthermore, bots and self
responses are detected and filtered out in the following analysis, in order to more precisely
measure the human review activity and the characteristics of the developers in the process.
Bot activity is investigated separately in chapter 6.

Figure 3.1.: Author activity in terms of months

Active months is a measure that was derived from statistics which are outputs of the gitdm
tool. Gitdm generates dates of the first and the last commits authored by each developer.
These dates are then refined and used to calculate the number of months each author has
been active for.

4

3. Authoring Activity

The histogram in �gure 3.1 shows the distribution of active months among developers.
The red line marks the average number of active months among developers. A jump can be
observed on the left side of the histogram which represents the developers newly joining the
kernel community together with shortly active committers to the kernel. In addition, each
point the scatter plot in 3.1 shows represents a patch in the kernel. The x and y axes show
the number of responses received and the active months of its author respectively. There no
clear relation observed between these two quantities while outliers where many responses
are received are seen.

Figure 3.2.: Author activity in terms of commits

Number of commits made by a developer is an alternative measure to quantify developer
experience in the Linux kernel. Histogram in �gure 3.2 shows the logarithm scaled distribution
of the number of commits across developers. Similar to �gure 3.1, a skew to the left of the
distribution graph is seen. The second graph shows the relation between a the number
of responses received and the patch author's active months. As a result of the amount of
the developers with fewer commits, the lower left part of the plot is quite dense. No clear
relationship between the two measures is observed. However, since many developers appear
to have less experience, the distribution plot suggests looking into less experienced developers
in the kernel. Further investigation on their activity in the kernel is included in the following
section.

Figure 3.3 shows the top companies were most frequently associated to and the corre-
sponding number of newcomer or shortly active developers. The newcomer developers or
shortly active developers are de�ned as the developers with less than 2 active months. This
aggregation demonstrates the signi�cance of these companies in the process of engaging
new people with the kernel development. 20.23% of the developers with less than 2 active
months and 28.14% of all developers were associated with these companies. Figure 3.4 shows
the percentages of developers these companies hire. As it is seen in the graph, the leading
company in the newcomer and shortly active developers, Intel, also hired a signi�cant portion
of the kernel developers. 6.04% of all developers were hired by them. Similarly, the following
two companies in the highest number of newcomer and shortly active ranking, Google and
IBM, hired 2.12% and 2.23% of all developers respectively.

5

3. Authoring Activity

Figure 3.3.: Top companies the shortly active developers are associated to

In addition to the companies hiring the shortly active or newcomer developers, large
proportions of the developers associated with them are among the developers with fewer
active months. Figure 3.5 displays the top 50 companies who employ the largest numbers of
kernel developers. The x axis shows the number of the corresponding developers. The plot is
colored based on the developer's level of experience measured in the number of active months.
As it is seen in the graph, most of the developers that are associated to these companies have
lower numbers of active months in the kernel. Intel has 34.38% of its developers in the kernel
having less than 2 active months. However, there are exceptions to this behavior. For example
76% Red Hat developers in the kernel has larger than 1 active months, 59% has larger that 24
months.

3.2. One Time Committers in the Linux Kernel

Since the fact that committing one time to the kernel can be a quite common practice, as
established in the previous section, the focus of the following analysis is the content and the
authors of the commits made in such a way.

Figure 3.6 shows the 20 most frequently changed �les by the one time committers. MAIN-
TAINERS �le includes the maintainer, mailing list and kernel section information for devel-
opers to use as a reference for development. This �le is not used when building the kernel
while being included in the repository [5]. Focusing on the rest of the popular �les, the most
common directory, drivers, is a popular �rst step in kernel development for developers, as
kernel maintainer Shuah Khan points out. She argues that the reasons for the popularity of
drivers are easier acceptance compared to core kernel sections in addition to being an easier
area to start with the kernel development. In these cases, the developers possibly add support
for new drivers, add device IDs to the existing drivers or send �xes to the existing drivers [6].

6

3. Authoring Activity

Figure 3.4.: Percentages of developers associated to selected companies

Figure 3.7 shows activity of shortly active committers, activity of one time committers and
total activity by time. The activity described as shortly active contains authors who have
less than 2 active months. This could either mean that an author newly joined the kernel
development community or he/she has worked for a short period time and has not authored a
commit afterwards. In �gure 3.7, a gradual increase in total number of commits are observed
in weekly chart through kernel releases of all time, both one time committers' commits and
shortly active authors' commits remain relatively insigni�cant. We can observe larger numbers
of shortly active author commits compared to one time committer commits throughout the
time period investigated. However, this comparison is justi�ed by the fact that the shortly
active authors include one time committers, people who newly joined the community and
people who have been active for a short period of time like one time committers but authored
multiple commits. It is important to further note that the jump in both shortly active author
commits and one time committer commits at the end of the graphs are caused by the authors
whose future activity cannot be foreseen and might change in the future as they continue
their activity.

3.3. Author Activity Area

Another aspect of the developer activity and a potential variable affecting the amount
of review is the area of activity. To de�ne the area, mailing lists that each author has
submitted patches to is used. The motivation for de�ning this measure is to be able to draw
characteristics of each developer based on what they have been doing in the kernel. We
further attempt to associate where a developer belongs to based on this measure with the
number of review emails they receive.

In order to de�ne each person using mailing lists, vectors representing each person are

7

3. Authoring Activity

Figure 3.5.: Top companies with the larges number of developers associated to them

Table 3.1.: A sample vector representing a person by mailing lists

'alsa-devel@alsa-
project.org'

'amd-gfx
@lists.freedesktop.org'

'devicetree
@vger.kernel.org'

'dri-devel
@lists.freedesktop.org'

0.13 0 0.38 0.11

created. The vector dimensions are each of the mailing lists and the dimension values are the
number of patches the developer has submitted to the corresponding mailing list.

Each developer vector is then re-scaled to have the norm of 1 or normalized. After the
normalization, dimensions to be used in the following analysis are selected using a variance
threshold of 0.01. The purpose of the normalization is to allow each developer to contribute
to the variance threshold equally. Additionally, the normalization is intended to prevent
imbalances in the following analysis. The variance threshold is used so that some of the
less active mailing lists are eliminated and the mailing list that more distinctly de�ne the
developers are used. Table 3.1 shows a part of a sample vector representing an individual
developer after the operations explained above are applied.

Next, we attempt to cluster developers in groups using the described vectors to represent
each person. K-Means algorithm is used for clustering. The algorithm works by repeatedly
assigning points to cluster centers and calculating new cluster centers using the points in the
clusters [7].

Since K-Means algorithm requires to specify the number of clusters, a criteria to determine
the number of clusters was needed. The sum of distances from each point to the corresponding
cluster center is selected to be an error measure for this purpose. The number of clusters
are then selected to be the point where the decrease of sum of distances plateaus. Figure 3.8
shows the changes in the errors as the number of clusters is increased. 26 is determined to be

8

3. Authoring Activity

Figure 3.6.: Number of one timer commits to popular �les

the appropriate number of clusters based on this measurements.
The dimension values of each cluster center is displayed in �gure 3.9. The cluster centers

can be interpreted as a representative of an average person that belongs to that cluster. We
proceed to determine whether belonging to a certain cluster implies a differing amount of
reviews from others.

Figure 3.10 shows the average number of responses received per patch authored by de-
velopers in each cluster. The red line marks the average number of responses received per
patch regardless of the clusters. As it is seen in the graph, there are clusters both above and
below the average. In order to statistically determine these deviations from the average and
the deviations between the clusters, we proceed to apply a statistical test.

As the distributions of number of responses per patch are not normally distributed as
displayed in appendix A, a non-parametric test had to be performed. Kruskal-Wallis H test
is selected for this purpose. Kruskal-Wallis H test performs one-way analysis of variance
using ranks. This test does not require normally distributed samples. The samples are only
assumed to be independent and identically distributed [8]. Our null hypothesis is that all of
the group means are equal while our alternative is that at least two group means differ from
each other.

H0 : mi = mj 8i , j 2 [0, 25] HA : mi 6= mj 9i , j 2 [0, 25] (3.1)

Note that each group contains a series of numbers that are the number of responses received
to a patch authored by a person in the corresponding cluster. Therefore, patch authors are
clustered and the numbers of responses their patches received are statistically tested. The test
resulted in a p-value of 0 in the measured precision (or rather a p-value < 2.2 * 10� 16) and the
null hypothesis is rejected with a 95% signi�cance to conclude that at least two of the groups
differ from each other.

9

	Acknowledgments
	Abstract
	Contents
	Introduction
	On this thesis
	Further Reading

	Research Questions
	Authoring Activity
	Comparing Author Activity in Kernel
	One Time Committers in the Linux Kernel
	Author Activity Area

	Maintainers
	Authoring activity by maintainers
	Review activity

	Patches
	Patch components
	Individual Mailing Lists
	Individual Sections

	Bots
	Comparing Bot Activity with Human Activity
	Bot Activity Across Mailing Lists

	Conclusion
	Clustering Developers
	Clustering Patches Using Mailing Lists
	Clustering Patches Using Maintainer Sections
	List of Figures
	List of Tables
	Bibliography

