
© 2022 Western Digital Corporation or its affiliates. All rights reserved.

zonefs: Features Roadmap

Damien Le Moal
Distinguished Engineer, System Software Group, Western Digital Research

Sep 14th, 2022

9/12/22



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

Outline

• Zonefs overview and its position in Linux zoned storage ecosystem

• Zonefs recent (ish) fixes and updates

• Zonefs features roadmap
– Read IO tail latency improvements
– Reducing memory usage
– Asynchronous zone append
– Allowing buffered writes



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

zonefs Overview
Expose each zone of a zoned device as an append-only file

• zonefs exposes the zones of a zoned device as files
– Files are grouped per zone type in different sub-directories
– Files of sequential write required zones cannot be written 

randomly: O_APPEND writes only (append only file)

• Seamless integration of zone commands within 
regular file system calls
– E.g. truncate(), ftruncate() -> zone reset or zone finish

0

Conventional
Zones

0 N 1 M1

Sequential
Zones

cnv seq

0 1 N 0 1 M

https://zonedstorage.io/linux/fs/#zonefs

Hardware

SCSI Low Level Drivers

User
Space

Kernel
Space

ZBC/ZAC SMR Disks

SCSI Mid Layer

ZBD Compliant Applications

Since 5.6.0

Block I/O Layer

File Access

Block I/O Scheduler

zonefs

First zone used 
for the FS 

super block

https://zonedstorage.io/linux/fs/


© 2022 Western Digital Corporation or its affiliates. All rights reserved.

zonefs Position In the Zoned Storage Ecosystem
Facilitates implementation of zone compliant applications

Hardware

User
Space

Kernel
Space

ZBC/ZAC SMR Disks, NVMe ZNS SSDs

SCSI Mid Layer & Low Level Drivers, NVMe Driver NVMe

Device Mapper (dm-zoned)

Block I/O Layer SCSI 
Generic 
Driver

xfs, ext4btrfs

File Access Block Access Passthrough AccessZoned Block AccessFile Access

Block I/O Scheduler

zonefs

File Access

POSIX behavior Sequential write constraint exposed to users

Legacy Applications ZBD Compliant Applications

Kernel implementation difficulty

Application implementation difficulty

Harder Easy

Harder

Kernel:

User: Easy



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• Nasty read-ahead bug fix
– Could cause an infinite loop during read-ahead processing
• Due to an incorrect implementation of the iomap begin method

• Improved handling of the explicit_open mount option
– Number of files that can be open for writing is limited by both the maximum open zone limit *and* the 

maximum active zone limit
– A file open for writing is kept “active” even if it is empty or full, that is, even if its underlying zone is not 

active
• Ensure that the user can always re-start writing the file at any time
• Maintains the guarantee that if a file can be open for writing, then it can be written

– Assuming a healthy device (of course)

• Sysfs attributes for max open files, max active files, current number of open & active 
files, etc
– Regardless of explicit_open mount option use

Bug fix and active zone management through explicit_open option

9/12/22 5

Zonefs Recent (ish) Updates



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• IO tail latency improvements
– Lower tail latency of read operations executed in parallel with 

zone operations

• Reducing memory usage
– On-demand inode allocation with open()

• Asynchronous zone append
– Enable the use of REQ_OP_ZONE_APPEND BIOs for 

asynchronous write IOs

• Allowing buffered writes
– Remove the O_DIRECT write constraint

Performance (IO latency) and ease of use

9/12/22 6

Planned Improvements and New Features

Performance related improvements

Ease-of-use related improvements



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• Problem: read IO operations may be delayed if a concurrent zone operation is also being 
executed, e.g. a ftruncate() call changing a zone file size to its maximum possible value
– Zone finish operation transitioning the zone file to full state

• “normal” inode locking calls for ftruncate() write locking the inode (because of the file 
size change) and the read operation read locking
– While the zone finish operation is ongoing, read operations must wait

• This is unnecessary: zone finish can be switched to a read lock
– Zone finish operation does not affect the zone data, nor does it change the file block allocation
• All file blocks are always “pre-allocated” (allocation implied from the LBA range covering the zone capacity)

– Truncate mutex will keep serializing truncate operations
– Concurrent write operations may:
• Either wait for the zone finish holding the read lock and then fail (that is the user’s fault)
• Proceed first and the zone finish execute normally, eventually even being a nop (still a weird pattern that is the 

user’s fault)

Switch to “unusual” locking model to reduce read IO tail latency

9/12/22 7

Read IO Tail Latency Improvements



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• Currently:
– All file inodes and directory entries are initialized and cached on mount
• No dynamic allocation of inodes and directory entries

– Unused zone files consume memory (inode and dentry)
• 100,000+ zones on latest generation SMR drives
• Significant memory usage

• Optimization: on-demand inode initialization
– On open(), use .get_inode()
• Allocate inode
• Do report zones to get the file size/wp location

– Directory entries not really needed: inode “number” can be inferred directly from file name
• Save more memory but cannot use generic_read_dir() / dcache_readdir()

– Need special code

• A lot more code needed and open() performance hit... Is it worth it ?

On-demand inode initialization

9/12/22 8

Reducing Memory Usage



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• Planned semantic
– File *not* open with O_APPEND: regular write operations (REQ_OP_WRITE)
– File open with O_APPEND: zone append write operations (REQ_OP_ZONE_APPEND)
• Written file offset is returned to the user as the AIO result

•What we need:
– Ability to return a 64-bits offset (written offset)
• Trivial with legacy AIOs, a little more difficult with io_uring but now possible thanks to the addition of large CQEs
• Any FS would gain the ability to return the written offset for O_APPEND writes

– Adding an iomap submit_bio hook to zonefs to issue zone append operations
• These BIOs cannot be split: one AIO must be exactly one BIO
• This implies 2 choices:

– (1) switch back to regular writes if any AIO is too large for a zone append and wait for the completion of any on-
going zone append write before issuing the regular writes, or (2) fail the io_submit() call

– (1) is preferred to maintain backward compatibility but is less predictable for the user, e.g. “can I get rid of mq-
deadline ?” becomes hard to determine. Mount options ? Thoughts ?

Allows a user to run zonefs without the mq-deadline scheduler

9/12/22 9

Asynchronous zone append



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• Planned semantic
– Write *must* remain aligned to file blocks (sectors)
• Last sector update problem: read-modify-write is not possible

– O_SYNC like writes, always
• No guarantees from the page cache that delayed dirty page writes are sequential

• Fairly straightforward implementation
– Write() context needs to: (1) allocates a folio, (2) copies new data into it, (3) submit the folio for writing, 

(4) add the folio to the page cache on completion
• All under the inode write lock
• Handling of file size updates remain unchanged
• In case of error, the folio is freed

– No conflicts with mmap() as that writable mappings are not supported

Remove O_DIRECT write constraint

9/12/22 10

Allowing Buffered Writes



© 2022 Western Digital Corporation or its affiliates. All rights reserved.

• Other problems ?

• Feature requests ?

9/12/22 11

What else ?



© 2022 Western Digital Corporation or its affiliates. All rights reserved. 9/12/22


