
System Software Group, WD Research

BTRFS Declustered Parity
RAID For Zoned Devices

Johannes Thumshirn

14 September, 2022

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Outline

• Background
• Btrfs Overview
• Zoned Devices
• ZONE APPEND Write

Operations
• Btrfs On Zoned Devices

• Problem Statement
• Lessons Learned From

RAID5/6

• Proposed Changes
• Distribute Data Placement
• Journaling
• Configurable Parity

Algorithm

• Design Background
• Distributed Data

Placement
• RAID Stripe Tree

• Current Status
• Outlook
• Screenshots

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

R
ef

3

Background
9/14/2
2

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Btrfs Overview
What’s btrfs?

• Copy-on-Write Filesystem
– Based on CoW B-Trees
– Snapshots
– Subvolumes

• Additional Features
– Transparent data compression

• lzo, zlib or zstd
– Checksums for data and metadata

• crc32c, xxhash64, sha256, blake2b

– Built-in multi device support (RAID)
• RAID 0, RAID 1, RAID 10, RAID 5,

RAID 6
– Incremental backups with

send/receive
• Send stream of changes between

two subvolume snapshots

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Zoned Block Devices
What’s ZBC, ZAC And ZNS?

• Most commonly found today in the
form of SMR hard-disks (Shingled
Magnetic Recording) or ZNS SSDs
• Defined in SCSI ZBC, ATA ZAC and

NVMe ZNS

• LBA range divided into zones
• Conventional zones

• Accept random writes

• Sequential write required zones
• Writes must be issued sequentially

starting from the “write pointer”
• Zones must be reset before

rewriting

• Users of zoned devices must be aware
of the sequential write rule
• Device fails write command not

starting at the zone write pointer

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

ZONE APPEND Write Operations
Introduced with NVMe Zoned Namespace (ZNS) SSDs

• ZONE APPEND write operation only
specifies the target zone
• The device automatically write at the

current write pointer position of the
zone

• The first written LBA number is
returned to the host with the
command completion notification

• ZONE APPEND command is not
defined in the ZBC (SCSI) and ZAC
(ATA) standards
• Emulated in the SCSI disk driver

since kernel version 5.8

• With zone append, writes to a zone
can be delivered in any order without
failing
• User must however be ready to

handle out-of-order completions

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Btrfs On Zoned Block Devices
What we’ve done

• Basic support merged with
kernel v5.11
• Log structured super block

• Superblock is the only
fixed location data
structure in btrfs

• Align block groups to
zones

• Zoned extent allocator
• Append only allocation to

avoid random writes

• Fully functional since kernel
v5.12
• Use ZONE APPEND for

data writes
• Not yet completely on par

with regular BTRFS
features
• No NOCOW
• No fallocate(2)
• No RAID yet

• NVMe ZNS support since
kernel v5.16
• Zone capacity smaller than

zone size
• Respecting

queue_max_active_zones() limits

• Currently in stabilization
phase
• Automatic zone reclaim

merged in v5.13
• Bug fixes for corner cases

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

W
h

8

Problem Statement
9/14/22

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Problem Statement
Lessons Learned From Btrfs RAID5/6

9

• Disconnection of ”File-Extent-Layer” and “RAID-Layer”
• Sub stripe length updates in place

• RAID Write Hole
• Not possible on a zoned btrfs

• CoW needs to know about RAID and vice versa
• Needs to work with “nocow” files/filesystem as well

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Problem Statement
Lessons Learned From Btrfs RAID

• Implicit data placement
• Each per disk sub-stripe has same offset from chunk start

• Doesn’t work with a zoned filesystem (even for RAID 1)
• Multiple writes to different drives can race

• No explicit write position with zone append command: the drives decides

D1 D1

D2D2

D1

D1

D2

D2

vs.

Deterministic Placement Non-deterministic Placement

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Problem Statement
Lessons Learned From RAID

• RAID Rebuild Stress
• RAID5 can only tolerate one missing

drive, two for RAID 6
• High stress on remaining drives for

rebuild
• Increased chance of disk dying

during rebuild

11

• Inflexible Encoding Scheme
• XOR for RAID 5 (P-Stripe)
• XOR and Shift for RAID 6 (Q-Stripe)

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

H
o

12

Proposed Changes
9/14/22

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Proposed Changes
How to fix these problems

• Distribute Data Placement
• Similar to what BTRFS

RAID 1 already does
• Less pressure on single

disks in recovery

• Copy-on-Write to circumvent
write hole
• Introduce RAID Stripe

Tree
• Write data first, then meta-

data describing the stripe
• Allows us to use

REQ_OP_ZONE_APPEN
D for zoned data writes

• Configurable Parity
Algorithm
• None (RAID 0/1)
• XOR/P-Q Stripe (RAID

5/6)
• Erasure-Codes: Reed

Solomon or MDS Codes
(more than 2 blocks of
parity)

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL14

Design Background
9/14/2
2

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
Distributed Data Placement

• Traditional RAID6 (2D+2P)
• Dataset + parity is striped across all

disks

file D0 D1 D2 D3

RAID 6 volume (2D+2P)

D0 D1 Q

D2 D3

Pstripe

P Q

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
Distributed Data Placement

• Traditional RAID6 (2D+2P)
• Dataset + parity is striped across all

disks

• Declustered RAID (2D+2P)
• Dataset + parity is distributed among

a subset of disks

DP volume (2D+2P over 8 disks)

D0

D1

Q

D3

P

D4 stripe

stripe
file D0 D1 D2 D3 file D0 D1 D2 D3

P

Q

RAID 6 volume (2D+2P)

D0 D1 Q

D2 D3

Pstripe

P Q

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

• Can be seen as an inverse of the free space tree
• Written after the data has reached the disks
• Records the location (disk, LBA) of each sub-stripe

• Kind of RAID “journal”
• Removes write hole (CoW)
• Can be use for “nocow” as well

• Logical to physical addresses translation
• Logical (start, length) tuple maps to N (disk, start) tuples

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Device

Design Background
RAID Stripe Tree

• Translate logical to physical addresses (3D + 2P)

File Extent 0-
3M

Stripe Extent
0-1M

Disk 0

256M + 1M

Stripe Extent
1-2M

Disk 4

128M + 1M

Stripe Extent
2-3M

Disk 3

1024M + 1M

Stripe Extent
P- Parity

Disk 6

512M + 1M

Stripe Extent
Q-Parity

Disk 7

2048M + 1M

File Extent 24M-
27M…

FileLogical
Space

Physical
Space

Block Group

Device DeviceDeviceDevice

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

• Keyed by logical, length

• Additional per file extent space
consumption
• N*16 Bytes

• Example 3D + 2P RAID
• 5 * 16 Bytes = 80 Bytes stripe tree

nodes
• 51 Nodes per 4k sector

struct btrfs_key {
.objectid = file_extent_logical,
.type = BTRFS_RAID_STRIPE_EXTENT,
.offset = file_extent_length,

};

struct btrfs_dp_stripe {
/* array of RAID stripe extents this stripe is
* comprised of
*/
struct btrfs_stripe_extent extents[];

} __attribute__ ((__packed__));

struct btrfs_stripe_extent {
/* btrfs device-id this raid extent lives on */
__le64 devid;
/* physical start address on the device */
__le64 physical;

} __attribute__ ((__packed__));

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

struct btrfs_file_extent_item {

__le64 generation;

__le64 ram_bytes;

__u8 compression;

__u8 encryption;

__le16 other_encoding;

__u8 type;

__le64 disk_bytenr;

__le64 disk_num_bytes;

__le64 offset;

__le64 num_bytes;

} __attribute__ ((__packed__));

struct btrfs_key {
.objectid = file_extent_logical,
.type = BTRFS_RAID_STRIPE_EXTENT,
.offset = file_extent_length,

};

struct btrfs_dp_stripe {
/* array of RAID stripe extents this stripe is
* comprised of
*/

struct btrfs_stripe_extent extents[];
} __attribute__ ((__packed__));

struct btrfs_stripe_extent {
/* btrfs device-id this raid extent lives on */
__le64 devid;
/* physical start address on the device */
__le64 physical;

} __attribute__ ((__packed__));

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

struct btrfs_file_extent_item {

__le64 generation;

__le64 ram_bytes;

__u8 compression;

__u8 encryption;

__le16 other_encoding;

__u8 type;

__le64 disk_bytenr;

__le64 disk_num_bytes;

__le64 offset;

__le64 num_bytes;

} __attribute__ ((__packed__));

struct btrfs_key {
.objectid = file_extent_logical,
.type = BTRFS_RAID_STRIPE_EXTENT,
.offset = file_extent_length,

};

struct btrfs_dp_stripe {
/* array of RAID stripe extents this stripe is
* comprised of
*/

struct btrfs_stripe_extent extents[];
} __attribute__ ((__packed__));

struct btrfs_stripe_extent {
/* btrfs device-id this raid extent lives on */
__le64 devid;
/* physical start address on the device */
__le64 physical;

} __attribute__ ((__packed__));

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

struct btrfs_file_extent_item {

__le64 generation;

__le64 ram_bytes;

__u8 compression;

__u8 encryption;

__le16 other_encoding;

__u8 type;

__le64 disk_bytenr;

__le64 disk_num_bytes;

__le64 offset;

__le64 num_bytes;

} __attribute__ ((__packed__));

struct btrfs_key {
.objectid = file_extent_logical,
.type = BTRFS_RAID_STRIPE_EXTENT,
.offset = file_extent_length,

};

struct btrfs_dp_stripe {
/* array of RAID stripe extents this stripe is
* comprised of
*/

struct btrfs_stripe_extent extents[];
} __attribute__ ((__packed__));

struct btrfs_stripe_extent {
/* btrfs device-id this raid extent lives on */
__le64 devid;
/* physical start address on the device */
__le64 physical;

} __attribute__ ((__packed__));

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

struct btrfs_file_extent_item {

__le64 generation;

__le64 ram_bytes;

__u8 compression;

__u8 encryption;

__le16 other_encoding;

__u8 type;

__le64 disk_bytenr;

__le64 disk_num_bytes;

__le64 offset;

__le64 num_bytes;

} __attribute__ ((__packed__));

struct btrfs_key {
.objectid = file_extent_logical,
.type = BTRFS_RAID_STRIPE_EXTENT,
.offset = file_extent_length,

};

struct btrfs_dp_stripe {
/* array of RAID stripe extents this stripe is
* comprised of
*/

struct btrfs_stripe_extent extents[];
} __attribute__ ((__packed__));

struct btrfs_stripe_extent {
/* btrfs device-id this raid extent lives on */
__le64 devid;
/* physical start address on the device */
__le64 physical;

} __attribute__ ((__packed__));

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

Advantages

• Address translation
• Scrub friendly

• RAID Journal
• Ordered updates
• Similar to how checksums are

handled

Advantages

• No implicit connection needed
• REQ_OP_ZONE_APPEND

compatible

• Stronger reliability against device
faults
• M+K erasure code can be high

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
RAID Stripe Tree

Disadvantages

• Additional Metadata
• Especially if we also must do stripe

tree entries for metadata
• Merge consecutive and sequential

on-disk stripe extents?

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Design Background
Configurable Parity Algorithm

• Generates Parity or EC information

• Like how we handle compression
• Do the math on data read/write

• But different to how we handle compression
• Doesn’t modify the actual data but adds data

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

W
h

27

Current Status
9/14/22

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Current Status
Where are at the moment?

28

• Data RAID1 and RAID1 implemented
• Metadata doesn’t use

REQ_OP_ZONE_APPEND
• Already working out-of-the-box

• Data writes are recorded in raid-
stripe-tree

9/14/22

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Current Status

• Boilerplate mkfs creating an FS with
empty RAID stripe tree

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Current Status

• Tree-dump (on RAID1)

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Current Status

• Fsck On An Non-Empty RAID
Filesystem

© 2022 WESTERN DIGITAL CORPORATION OR ITS AFFILIATES ALL RIGHTS RESERVEDWESTERN DIGITAL CONFIDENTIAL

Thanks

Questions?

329/14/22

