
Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Cooperative DMA in a memory oversubscribed
environment

Being able to run memory oversubscribed virtual machines with
PCI passthrough via VFIO.

James Gowans (jgowans@amazon.com)

Amazon / AWS / EC2

LPC (VFIO/IOMMU/PCI MC), September 2022

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Agenda

1 Background: device passthrough and memory overcommit

2 IOMMU pgtable reremaping via mmu notifier

3 Guest cooperation: page pinning device driver

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Background, problem & requirements

VFIO IOMMU MAP DMA pins all pages, populating IOMMU pgtables:

Simplicity: no need to touch IOMMU again

Correctness: no possibility of DMAR failure

Prevents memory overcommit. :-(

Prior art:

ATS + PRI for faults. Not plumbed into VFIO? Unsure how
prevelant PRI is? Support on root port for arbitrary PCI or
only Intel graphics? May take a while to get generally correct.

SVA/SVM for pgtable sharing; does it work for all hardware?
May not always want IOMMU and userspace strictly in sync,
unless PRI/ATS in use.

Looking for solution for devices which *can’t* take PFs: No
PRI/ATS/SVM. Suggest software solution.

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Hook VFIO into MMU notifiers

Use case of keeping IOMMU in sync with userspace. Alternative to
SVA/SVM.

New ioctl: VFIO IOMMU MAP DMA *UNPINNED*: no allocation or
IOMMU pgtable population.

Hook into mmu notifiers:

change pte when a userspace pgtable entry is (re)mapped.

invalidate range (start|end) when entry is zapped.

Challenge: change pte not extensively used. Currently only CoW?
For IOMMU we *MUST* always notify. Need to increase coverage
to when new page is populated (lazy alloc).

One user is KVM; additional uses may interfere...

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Introduce IOMMU remap pte callback

VFIO would invoke new IOMMU callback:

struct iommu_domain_ops {

...

int (*remap_pte)(struct iommu_domain *domain,

dma_addr_t const iova,

phys_addr_t const pfn,

size_t const size);

}

That would walk page table and replace (or zap) entry.
Challenge: PTE size changes (eg: THP coalesce) may be tricky to
handle. Hugetlbfs would still work; fixed huge size.

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Pause for questions...

Next: make DMA robust with guest cooperation
Pause for questions/comments. Eg:

Compare this against Shared Virtual Address/Memory?

Is hooking into change pte notifier sane?

Is PTE size change (THP) a real problem?

Would HMM be applicable here? (I don’t think it’s the right
use case)

Other challenges?

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Guest cooperation: page pinning device driver

Problem: guest initiate DMA to non-resident page causing DMAR
failure. Prior art:

ATS + PRI, but not that prevalent.

Expose vIOMMU. Expensive due to VM exits on remapping,
lot of invalidation and shadow pgtables.

Light weight solution: guest kernel access page before DMA to
ensure resident. Much lower cost; typically no VM exit.

Just an access is good enough for lazy alloc, a shared “pinned”
bitmap can allow swap too. Carefully sequenced to avoid races.

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Driver integration

Where should “page touching” functionality hook in?

Expose as IOMMU? No: no DMAR, no IRQ remapping

Register on struct device device DMA ops? This:

const struct dma_map_ops *dma_ops;

Hook into dma direct map page (and friends)? Eg:

void *dma_direct_alloc(struct device *dev, size_t size,

dma_addr_t *dma_handle, gfp_t gfp, ...)

...

dma_pinning_pin(pfn, size, ...);

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Device discovery

How should the host expose the device? Just a few MMIO
registers... Discovery and handshake.

Must be probed early: before any DMA.

Piggyback on existing device? (virtio something?)

New ACPI table entry? Where?

Or device tree?

Guidance needed!

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment



Background: device passthrough and memory overcommit
IOMMU pgtable reremaping via mmu notifier
Guest cooperation: page pinning device driver

Next steps

Summary:

“Page pinning” DMA hook (in place of PRI + ATS).

Dynamic page tables via mmu notifiers (in place of SVM)

Proof of concept; seems to work:

Host: github:jgowans/linux/dynamic-vfio

Guest: github:jgowans/linux/page-touching-dma-ops-v6

Need to figure out relation to IOMMUFD.

Send out RFC for dynamic VFIO via mmu notifiers.

Start discussion on exposing page pinning device model.

James Gowans (EC2) Cooperative DMA in a memory oversubscribed environment

https://github.com/jgowans/linux/tree/dynamic-vfio
https://github.com/jgowans/linux/tree/page-touching-dma-ops-v6

	Background: device passthrough and memory overcommit
	IOMMU pgtable reremaping via mmu_notifier
	Guest cooperation: page pinning device driver

