
eBPF Kernel Scheduling with Ghost
Barret Rhoden

brho@google.com

● Ghost Primer
● How BPF works in Ghost
● “BPF-Only Scheduling”
● Biff: the world’s dumbest BPF-only scheduler
● Future work
● Discussion
● FAQ

Agenda

2

Ghost Primer

3

● Kernel scheduler class, below CFS in priority
● Scheduling decisions made in userspace by an agent process
● Kernel sends messages to the agent: “task X blocked on cpu 6”
● Agent issues transactions to the kernel: “run task X on cpu 12”

What is Ghost?

User
space

Transactions

Thread/CPU Messages
Ghost agents

CPU scheduling
decisions

Kernel

Application

Optional scheduling hints

Kernel
space

Ghost
scheduling class

4

● Using Ghost should not hurt the OS: agent fault isolation
● Even during operation, ghost cannot hurt the rest of the system

○ Below CFS in priority: CFS preempts Ghost tasks
○ Including kernel threads: don’t want to stop those!

● If the agent fails, all tasks get moved back to CFS
● Failure is configurable, and also triggerable by userspace:

○ Kernel notices a runnable task doesn’t get on cpu for X msec
○ Userspace daemon (borglet, kubelet) notices errors or poor performance
○ Application notices errors or poor performance

Do No Harm

5

Multiple Agents per Machine

● Ghost sched class supports distinct, independent agents
● Enclave: a set of CPUs scheduled by a single Ghost agent
● Semi-hard partition: you can move CPUs between enclaves, but it requires

the agent to yield the CPU
● Agent live-update mechanism to hand off control of an enclave

○ O(msec)
○ Have the new agent ready to go, kill the old one, etc.

6

How BPF works in Ghost

7

● Agent process attaches a BPF program: BPF is an extension of the agent
● Messages -> BPF_GHOST_MSG_SEND
● Transactions -> BPF_GHOST_SCHED_PNT (pick_next_task)

BPF in Ghost

User
space

Transactions

Thread/CPU Messages
Ghost agents

CPU scheduling
decisions

Kernel

Kernel
space

Ghost
scheduling class

8

“BPF
space”

BPF-PNT

BPF-MSG

Application

Optional scheduling hints

● BPF-MSG: BPF_PROG_TYPE_GHOST_MSG
○ Context is struct bpf_ghost_msg
○ Attached at produce_for_task(struct task_struct *p, struct bpf_ghost_msg *msg)
○ e.g. MSG_TASK_WAKEUP: “task 6 woke on cpu 15”

● BPF-PNT: BPF_PROG_TYPE_GHOST_SCHED
○ Context is struct bpf_ghost_sched
○ Attached in pick_next_task_ghost()
○ Essentially picks the next task to run on this cpu, via a helper

Ghost BPF Program Types: called from the kernel

9

https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L3411
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L815

Task Messages:

● MSG_TASK_NEW
● MSG_TASK_BLOCKED
● MSG_TASK_WAKEUP
● MSG_TASK_PREEMPT
● MSG_TASK_YIELD
● MSG_TASK_DEPARTED
● MSG_TASK_DEAD
● MSG_TASK_SWITCHTO
● MSG_TASK_AFFINITY_CHANGED
● MSG_TASK_LATCHED

Ghost Messages: the functional API for BPF-MSG

10

CPU Messages:

● MSG_CPU_TICK
● MSG_CPU_TIMER_EXPIRED
● MSG_CPU_NOT_IDLE
● MSG_CPU_AVAILABLE
● MSG_CPU_BUSY
● MSG_CPU_AGENT_BLOCKED
● MSG_CPU_AGENT_WAKEUP

 (so far…)

● bpf_ghost_wake_agent(cpu)
○ kick the userspace agent on a cpu

● bpf_ghost_run_gtid(task, …)
○ set task to run next on this cpu
○ called from BPF-PNT only

● bpf_ghost_resched_cpu(cpu)
○ force cpu to reschedule (sets need_resched)

Ghost BPF Helpers: interface to the kernel

11

https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1090
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1119
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1151

● Act as an agent ‘thread’, with similar privileges as userspace
● Closely coupled to the userspace agent

○ Embedded in the agent binary, libbpf-style
○ Have the same lifetime as the agent

● Share memory with the userspace agent
○ e.g. BPF_MAP_TYPE_ARRAY: mmapped by userspace

● “BPF Space” or “Ring-B”: analogous to x86 Ring-3:
○ Array maps are windows into the agent’s address space
○ bpf helpers are the entry points to the kernel, like syscalls
○ BPF_PROG_RUN attach points are the interrupt descriptor table vectors.

BPF Programs are part of the Agent

12

BPF-Only Scheduling

13

● All scheduling decisions are made in BPF
● Userspace has a role, but it is not in the critical path

“BPF-only” Scheduling

User
space

Transactions

Messages
Userspace Agents

Statistics, Parameter
Tweaking, Monitoring

Kernel

Kernel
space

Ghost
scheduling class

14

“BPF
space”

BPF-PNT

BPF-MSG

Application

BPF Agents

CPU scheduling
decisions

BPF
Maps

Why Schedule in BPF instead of Userspace?

● Alternative: context switch to that cpu’s agent task and let it handle messages
and pick_next_task.

● Three reasons BPF is better:
○ No context switches! (Depends on your app if this matters)
○ Don’t have to preempt a running task to run that cpu’s agent.

■ e.g. Task 6 wakes up. Don’t have to preempt another task to tell the agent about it.
○ BPF is synchronous! Solves a lot of heartache.

■ Hold the rq lock during bpf-msg, but not in bpf-pnt
■ In schedule()->pick_next_task() for bpf-pnt

● Downsides
○ Harder programming environment: limited loops, etc.
○ Event driven: harder to “spawn a background thread”
○ Data structures are limited to BPF Map types

15

Biff: a simple BPF-only scheduler

16

● Global FIFO scheduling policy! global_rq: BPF_MAP_TYPE_QUEUE

int biff_pnt(struct bpf_ghost_sched *ctx)
{

bpf_map_pop_elem(&global_rq, next);
bpf_ghost_run_gtid(next, ...);

}

int biff_msg_send(struct bpf_ghost_msg *msg)
{

switch (msg->type) {
case MSG_TASK_WAKEUP:
case MSG_TASK_PREEMPT:
case MSG_TASK_YIELD:

 bpf_map_push_elem(&global_rq, msg->gtid, 0);
 break;
 }
}

Biff Scheduler: world’s simplest BPF agent

17

https://github.com/google/ghost-userspace/blob/main/third_party/bpf/biff.bpf.c

● The ‘real’ Biff scheduler is a little more complicated
● Error handling, accounting helpers, etc.
● Any non-trivial scheduler will need to track per-cpu and per-thread data
● Biff is a policy-less tutorial for how you can track data and share it with

userspace or an application

Biff

18

● cpu_data: per-cpu data
○ struct biff_bpf_cpu_data { current_task; etc; }
○ BPF_MAP_TYPE_ARRAY, mmappable by userspace
○ indexed by cpu id

● sw_data: per-task data
○ struct biff_bpf_sw_data { runnable_at; last_ran_at; etc; }
○ BPF_MAP_TYPE_ARRAY, mmappable by userspace
○ indexed by a task’s status_word_index (densely allocated integer per task)

● sw_lookup:
○ BPF_MAP_TYPE_HASH
○ From task id (gtid) to status_word_index

Biff Maps

19

You can even pass this FD over a
unix socket to the application to let
them tell us per-workload hints!

static void task_stopped(int cpu)

{

 struct biff_bpf_cpu_data *pcpu;

 pcpu = bpf_map_lookup_elem(&cpu_data, &cpu);

 if (!pcpu)

 return;

 pcpu->current = 0;

}

/* Forces the cpu to reschedule and eventually call bpf-pnt. */

static int resched_cpu(int cpu)

{

 struct biff_bpf_cpu_data *pcpu;

 pcpu = bpf_map_lookup_elem(&cpu_data, &cpu);

 if (!pcpu)

 return -1;

 return bpf_ghost_resched_cpu(cpu, pcpu->cpu_seqnum);

}

Biff Helper Examples

20

static void __attribute__((noinline)) handle_wakeup(struct bpf_ghost_msg *msg)

{

 struct ghost_msg_payload_task_wakeup *wakeup = &msg->wakeup;

 struct biff_bpf_sw_data *swd;

 u64 gtid = wakeup->gtid;

 u64 now = bpf_ktime_get_us();

 swd = gtid_to_swd(gtid);

 if (!swd)

 return;

 swd->runnable_at = now;

 enqueue_task(gtid, msg->seqnum);

}

Biff Actual Message Handler

21

Enqueue: whatever policy you want.
Biff just sticks it in the global FIFO map

Get per-thread struct, do
your accounting

noinline and casting games…

● “dereference of modified ctx ptr R6 off=3 disallowed”
● The context is:

● Need to trick the compiler to not modify the register holding the ctx pointer?
● The verifier should think the context is fully modifiable…

○ ghost_msg_is_valid_access() returns true
● I’m probably messing up something…

Gotcha! Why is handle_wakeup() noinline?

22

struct bpf_ghost_msg {

union {

struct ghost_msg_payload_task_dead dead;

struct ghost_msg_payload_task_blocked blocked;

struct ghost_msg_payload_task_wakeup wakeup;

...

Future Work

23

● Is it possible to implement complex scheduling policies purely in BPF?
○ e.g. loop limitations.
○ New MAP_TYPES needed?

● What changes are needed to Ghost? Are BPF-PNT and BPF-MSG sufficient?
● What is the “Ghost Tax”, the performance overhead of our mechanisms?

○ By having the same policy as kernel-CFS, we can do an apples-to-apples comparison
○ Also would like to try CFS in ghost-userspace

● Can tweak CFS-on-Ghost beyond the existing sysfs settings
○ And can do so for a subset of cpus instead of the entire machine

Implement the CFS algorithm in BPF

24

● Would like a Map that’s an O(log n) tree, e.g. rb tree
● bpf_rbtree map (RFC from davemarchevsky@fb.com)
● Probably can’t just use existing bpf_map_helpers
● update, delete, pop, etc. probably aren’t expressive enough for an rb tree.

New MAP_TYPE for a Priority Queue / Heap?

25

https://lore.kernel.org/bpf/20220722183438.3319790-1-davemarchevsky@fb.com/

● All RAM for bpf maps is allocated by kernel/bpf/ code
● What if I want to look at a blob that came from somewhere else?

○ e.g. a device
○ e.g. I’m paravirtualized, and it is a host memory blob

● Want to treat it like an array map
● Instead of kmalloc (or vmalloc), it’s pinned memory (GUP, etc.)

New MAP_TYPE “preexisting memory blob”?

26

Discussion

27

Can you implement Ghost’s ABI purely in BPF?

● status_word_table: (dense map of thread data, updated by the kernel)
○ Make it a BPF array map, managed by BPF-MSG handlers

● Ghost’s message infrastructure (channels, power-of-two rings, etc.)
○ BPF ring buffers + bpf_ghost_wake_agent() helper

● Agent Tasks (one per cpu) are special…
○ Run above CFS, and are also a token marking the CPU in use by an enclave
○ Not sure that is doable with BPF as easily…

● Userspace agents are asynchronous: Ghost-BPF can handle that
○ Messages have sequence numbers, which are passed back to the kernel for transactions
○ Makes sure the agent is acting on the current state of a task.
○ Any “implement ghost userspace on BPF” scheme would need something like that

28

Is Ghost right for other BPF-only scheduling frameworks?

● Important distinction between SCHED_CLASS_GHOST and user agents/ABI
● BPF-MSG isn’t just “messages”: it’s the functional API from kernel to BPF

○ It’s a switch statement, like a dispatcher syscall, e.g. fcntl()
○ You could have a separate PROG_TYPE for every message

● Even if you wanted only BPF schedulers, I’d still want the BPF-MSG interface
○ e.g. MSG_TASK_NEW: it’s generated in 7 places in ghost.c! Lots of nuances about when

threads change classes: were they on_cpu, were they about to block, did they join and leave
before blocking, etc…

● Ghost solves the issue of safely delegating scheduling to some other agent
○ BPF or user space
○ Synchronous or asynchronous
○ Or at least tries to solve this issue. =)

29

● Main points:
○ Ghost: safe, extensible, kernel scheduling in both userspace and BPF-space
○ You can make a purely-BPF scheduler with Ghost
○ Biff: basic policy, example code for making your own scheduler
○ TBD: CFS, more advanced schedulers, MAP_TYPES, etc.

● Rough code
○ https://github.com/google/ghost-kernel
○ https://github.com/google/ghost-userspace
○ Tends to lag our in-house changes. Sorry.
○ Have to use “basel” to build the userspace libraries, for now. Sorry.

Fin

30

https://github.com/google/ghost-kernel/
https://github.com/google/ghost-userspace

FAQ

31

FAQ: what about BPF task local storage?

● Per-task storage:
○ void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)

● Can we use it? Not really.
○ ghost-bpf doesn’t have visibility into the kernel’s data structures
○ the contexts are ABI structs, e.g. struct bpf_ghost_msg
○ Tasks are referred to by ID, not by struct task_struct *.

● Even if you did use task_storage, it’s not accessible to userspace (agent or
application)

32

● Original use of BPF was to accelerate and supplement userspace agents
○ I sketched this out at LPC 21 (slide 29)

● BPF-MSG’s return value of 1 means “don’t send this message to userspace”
○ BPF-MSG can filter messages
○ e.g. MSG_CPU_TICK (timer tick fired) - don’t need to hear about that all the time!

● Ghost’s message API was originally designed for slower, userspace agents
○ e.g. there was no MSG_CPU_UNAVAILABLE / AVAILABLE, since CPUs would come and go too

quickly (whenever a CFS thread landed on_rq).
○ When tasks “SwitchTo” (Google’s fast context switch syscall, Turner LPC 13), we don’t send

messages. Only send a message when a task starts a “switchto chain”
○ Too many messages for userspace, but not for BPF!

FAQ: can you do hybrid BPF and Userspace Agents?

33

https://lpc.events/event/11/contributions/954/attachments/776/1463/eBPF%20in%20CPU%20Scheduler.pdf
https://github.com/google/ghost-kernel/blob/ghost-v5.11/include/uapi/linux/ghost.h#L287
https://blog.linuxplumbersconf.org/2013/ocw/proposals/1653
https://github.com/google/ghost-kernel/blob/ghost-v5.11/include/uapi/linux/ghost.h#L363

● Limited loops, no floating point, communicate through Maps only, etc.
● Atomic compare and swap on 64 bit only
● Hand-written smp_store_release()?

■ Tried __atomic_store_n(&some_bool, false, __ATOMIC_RELEASE)
■ Had to do asm volatile ("" ::: "memory"); WRITE_ONCE(some_bool, false);

FAQ: what other BPF limitations have you run into?

34

● The ghost kernel exports an mmapable file called the status word table
○ Every task in ghost has an entry in here
○ Contains info like “are you on_cpu” or “are you runnable”
○ Read-only to userspace
○ It’s a dense mapping: every task has an index into the table. O(65k) entries.
○ Made for fast info sharing to userspace agents, predates ghost-bpf.

● Biff uses a task’s status word index for its equivalent table: Status Word Data
○ We really just need an index allocator
○ Technically, we could have a QUEUE map of ints, loaded with 65k entries by userspace
○ The kernel gives us the status word index, so let’s use it
○ Though we could implement the status_word in BPF!

FAQ: what is the status word?

35

FAQ: what is an enclave?

● Enclave: a set of CPUs scheduled by a single Ghost agent
● Semi-hard partition: you can move CPUs between enclaves, but it requires

the agent to yield the CPU
● One ghost-bpf program per attachpoint (e.g. BPF-MSG) per enclave
● BPF programs may run on CPUs outside an enclave

○ Consider a task woken up by an unrelated task on a cpu outside the enclave

36

FAQ: what about the global scheduling model?

● This is having a single CPU (in userspace) spin and schedule all of the cpus
○ Outlined at LPC 21 (slide 24-26)
○ Without BPF on every cpu, particularly BPF-PNT, you’re just too slow for certain applications

● You can have a thread spin in userspace, monitoring and updating bpf maps
● You can pursue a hybrid approach, where that userspace thread occasionally

overrides BPF. But synchronization is a pain. I’ve tried, and it’s tricky.

37

https://lpc.events/event/11/contributions/954/attachments/776/1463/eBPF%20in%20CPU%20Scheduler.pdf

FAQ: why not hook select_task_rq()?

● Determines which cpu’s struct rq (runqueue) to enqueue a waking task on
● The in-kernel RQ doesn’t really matter: the “real” RQ is in the agent
● When Ghost runs a task (bpf_ghost_run_gtid() or a transaction) it will migrate

the task_struct from whichever struct rq it was on to the target struct rq
● If you knew where a task was likely to run, then putting it there when it wakes

could be a slight performance win
● But not nearly as important as it is for in-kernel CFS

○ select_task_rq() is part of the scheduling policy for the kernel. But not for ghost.
● Have a per-enclave tunable for whether to wake on waker’s or wakee’s cpu
● Maybe we’ll add a hook for select_task_rq() if it’s important

38

FAQ: what are the RQ locking rules with ghost-bpf?

● An RQ lock is held during BPF-MSG
○ If the message is for task X, we hold the RQ lock for that task’s RQ

● No RQ is locked during BPF-PNT
○ This is so we can call bpf_ghost_run_gtid(task), which needs to grab both the task’s RQ lock

and the current cpu’s RQ lock.

39

FAQ: any other Ghost improvements on the horizon?

● Maybe more BPF helpers:
○ “kill my agent / enclave”: things went poorly and we want to tear down the system
○ <Insert Your Helper Here>

● Remove userspace support stuff from kernel/sched/ghost.c: truly BPF-only!
Perhaps that will make Ghost more upstreamable?

● Agents in other languages: since we aren’t scheduling with the agent tasks,
we don’t need to write in low-level code (C or Rust). Just interact with Maps
(Go, Python, whatever)

40

● Main points:
○ Ghost: safe, extensible, kernel scheduling in both userspace and BPF-space
○ You can make a purely-BPF scheduler with Ghost
○ Biff: basic policy, example code for making your own scheduler
○ TBD: CFS, more advanced schedulers, MAP_TYPES, etc.

● Rough code
○ https://github.com/google/ghost-kernel
○ https://github.com/google/ghost-userspace
○ Tends to lag our in-house changes. Sorry.
○ Have to use “basel” to build the userspace libraries, for now. Sorry.

Fin

41

https://github.com/google/ghost-kernel/
https://github.com/google/ghost-userspace

