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Ghost Primer



What is Ghost?

Kernel scheduler class, below CFS in priority

Scheduling decisions made in userspace by an agent process
Kernel sends messages to the agent: “task X blocked on cpu 6
Agent issues transactions to the kernel: “run task X on cpu 12”
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Do No Harm

e Using Ghost should not hurt the OS: agent fault isolation

e Even during operation, ghost cannot hurt the rest of the system
o Below CFS in priority: CFS preempts Ghost tasks
o Including kernel threads: don’t want to stop those!

e [f the agent fails, all tasks get moved back to CFS

e Failure is configurable, and also triggerable by userspace:
o Kernel notices a runnable task doesn’t get on cpu for X msec
o Userspace daemon (borglet, kubelet) notices errors or poor performance
o Application notices errors or poor performance



Multiple Agents per Machine

e Ghost sched class supports distinct, independent agents

e Enclave: a set of CPUs scheduled by a single Ghost agent

e Semi-hard partition: you can move CPUs between enclaves, but it requires
the agent to yield the CPU

e Agent live-update mechanism to hand off control of an enclave

o O(msec)
o Have the new agent ready to go, kill the old one, etc.



How BPF works in Ghost



BPF in Ghost

e Agent process attaches a BPF program: BPF is an extension of the agent
e Messages -> BPF_GHOST MSG_SEND
e Transactions -> BPF_GHOST SCHED_PNT (pick_next task)

User
e space
Kernel BPF
space space” Application 4
Optional scheduling hintsi
Kernel Thread/CPU Messages v
Ghost agents
BPF-MSG
Ghost . Q
scheduling class| | Transactions
CPU scheduling
Sl decisions




Ghost BPF Program Types: called from the kernel

e BPF-MSG: BPF_PROG TYPE_GHOST MSG

o Context is struct bpf_ghost_msg
o Attached at produce_for_task(struct task_struct *p, struct bpf_ghost msg *msgQ)
o e.g. MSG_TASK_WAKEUP: “task 6 woke on cpu 15”

e BPF-PNT: BPF_PROG TYPE_GHOST SCHED
o Context is struct bpf_ghost _sched
o Attached in pick_next_task_ghost()
o Essentially picks the next task to run on this cpu, via a helper



https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L3411
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L815

Ghost Messages: the functional API for BPF-MSG

Task Messages:

MSG_TASK_NEW
MSG_TASK_BLOCKED
MSG_TASK_WAKEUP
MSG_TASK_PREEMPT
MSG_TASK_YIELD
MSG_TASK_DEPARTED
MSG_TASK_DEAD
MSG_TASK_SWITCHTO
MSG_TASK_AFFINITY CHANGED
MSG_TASK_LATCHED

CPU Messages:

MSG_CPU_TICK
MSG_CPU_TIMER_EXPIRED
MSG_CPU_NOT IDLE
MSG_CPU_AVAILABLE
MSG_CPU_BUSY
MSG_CPU AGENT BLOCKED
MSG_CPU_AGENT WAKEUP

(sofar...)
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Ghost BPF Helpers: interface to the kernel

e bpf ghost wake agent(cpu)
o kick the userspace agent on a cpu

e bpf ghost run_gtid(task, ...)
o set task to run next on this cpu
o called from BPF-PNT only

e bpf ghost resched_cpu(cpu)
o force cpu to reschedule (sets need resched)



https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1090
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1119
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1151

BPF Programs are part of the Agent

e Act as an agent ‘thread’, with similar privileges as userspace

e Closely coupled to the userspace agent
o Embedded in the agent binary, libbpf-style
o Have the same lifetime as the agent
e Share memory with the userspace agent
o e.g. BPF_MAP_TYPE_ARRAY: mmapped by userspace
e “BPF Space” or “Ring-B”: analogous to x86 Ring-3:
o Array maps are windows into the agent’s address space

o bpf helpers are the entry points to the kernel, like syscalls
o BPF_PROG_RUN attach points are the interrupt descriptor table vectors.
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BPF-Only Scheduling
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“BPF-only” Scheduling

e All scheduling decisions are made in BPF
e Userspace has a role, but it is not in the critical path
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Why Schedule in BPF instead of Userspace?

e Alternative: context switch to that cpu’s agent task and let it handle messages
and pick_next_task.

e Three reasons BPF is better:
o No context switches! (Depends on your app if this matters)
o Don’t have to preempt a running task to run that cpu’s agent.
m e.g. Task 6 wakes up. Don’t have to preempt another task to tell the agent about it.
o BPF is synchronous! Solves a lot of heartache.
m Hold the rq lock during bpf-msg, but not in bpf-pnt
m In schedule()->pick_next_task() for bpf-pnt

e Downsides
o Harder programming environment: limited loops, etc.

o Eventdriven: harder to “spawn a background thread”
o Data structures are limited to BPF Map types
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Biff: a simple BPF-only scheduler
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Biff Scheduler: world’s simplest BPF agent

e Global FIFO scheduling policy! global rq: BPF_MAP_TYPE_ QUEUE

int biff_pnt(struct bpf_ghost_sched *ctx)
{
bpf_map_pop_elem(&global_rq, next);
bpf_ghost_run_gtid(next, ...);
}

int biff_msg_send(struct bpf_ghost_msg *msg)
{
switch (msg->type) {
case MSG_TASK_WAKEUP:
case MSG_TASK_PREEMPT:
case MSG_TASK_YIELD:
bpf_map_push_elem(&global_rq, msg->gtid, 0);
break;


https://github.com/google/ghost-userspace/blob/main/third_party/bpf/biff.bpf.c

Biff

The ‘real’ Biff scheduler is a little more complicated

Error handling, accounting helpers, etc.

Any non-trivial scheduler will need to track per-cpu and per-thread data
Biff is a policy-less tutorial for how you can track data and share it with
userspace or an application
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Biff Maps

e Cpu_data: per-cpu data

o struct biff_bpf _cpu_data { current_task; etc; } You can even pass this FD over a
o BPF_MAP_TYPE_ARRAY, mmappable by userspace unix socket to the application to let

o indexed by cpu id them tell us per-workload hints!

e sw_data: per-task data
o struct biff_bpf sw_data { runnable_at; last ran_at; etc; } /

o BPF_MAP_TYPE_ARRAY, mmappable by userspace

o indexed by a task’s status_word_index (densely allocated integer per task)
e sw_lookup:

o BPF_MAP_TYPE_HASH

o From task id (gtid) to status_word_index
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Biff Helper Examples

static void task_stopped(int cpu)

{
struct biff_bpf_cpu_data *pcpu;
pcpu = bpf_map_lookup_elem(&cpu_data, &cpu);
if (!pcpu)
return;
pcpu->current = 0;
}

/* Forces the cpu to reschedule and eventually call bpf-pnt.

static int resched_cpu(int cpu)

{
struct biff_bpf_cpu_data *pcpu;
pcpu = bpf_map_lookup_elem(&cpu_data, &cpu);
if (!pcpu)
return -1;
return bpf_ghost_resched_cpu(cpu, pcpu->cpu_segnum);
}

*/
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Biff Actual Message Handler

static void __attribute__((noinline)) handle_wakeup(struct bpf_ghost_msg *msg)

{

struct ghost_msg_payload_task_wakeup *wakeup = &msg->wakeup;

struct biff_bpf_sw_data *swd;
u64 gtid = wakeup->gtid;
u64 now = bpf_ktime_get_us();

swd = gtid_to_swd(gtid);
if (!swd)

\ . . .
noinline and casting games...

return;

swd->runnable_at = now;

enqueue_task(gtid, msg->seqnum);

Get per-thread struct, do
your accounting

Enqueue: whatever policy you want.
Biff just sticks it in the global FIFO map
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Gotcha! Why is handle wakeup() noinline?

e ‘“dereference of modified ctx ptr R6 off=3 disallowed”
e The context is:

struct bpf_ghost_msg {

struct ghost_msg_payload_task_dead dead;
struct ghost_msg_payload_task_blocked blocked;

struct ghost_msg_payload_task_wakeup wakeup;

e Need to trick the compiler to not modify the register holding the ctx pointer?

e The verifier should think the context is fully modifiable...
o ghost msg is valid access() returns true

e |I'm probably messing up something...
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Future Work
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Implement the CFS algorithm in BPF

e Is it possible to implement complex scheduling policies purely in BPF?

o e.g. loop limitations.
o New MAP_TYPES needed?

e \What changes are needed to Ghost? Are BPF-PNT and BPF-MSG sufficient?

e What is the “Ghost Tax”, the performance overhead of our mechanisms?

o By having the same policy as kernel-CFS, we can do an apples-to-apples comparison
o Also would like to try CFS in ghost-userspace

e Can tweak CFS-on-Ghost beyond the existing sysfs settings
o And can do so for a subset of cpus instead of the entire machine
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New MAP_TYPE for a Priority Queue / Heap?

Would like a Map that’s an O(log n) tree, e.g. rb tree

bpf rbtree map (REC from davemarchevsky@fb.com)

Probably can’t just use existing bpf_map_helpers

update, delete, pop, etc. probably aren’t expressive enough for an rb tree.
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https://lore.kernel.org/bpf/20220722183438.3319790-1-davemarchevsky@fb.com/

New MAP_TYPE “preexisting memory blob™?

e All RAM for bpf maps is allocated by kernel/bpf/ code

e What if | want to look at a blob that came from somewhere else?
o e.g.adevice
o e.g.I'm paravirtualized, and it is a host memory blob

e Want to treat it like an array map
e Instead of kmalloc (or vmalloc), it's pinned memory (GUP, etc.)
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Discussion
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Can you implement Ghost’s ABI purely in BPF?

e status word table: (dense map of thread data, updated by the kernel)
o Make it a BPF array map, managed by BPF-MSG handlers
e Ghost’'s message infrastructure (channels, power-of-two rings, etc.)
o BPF ring buffers + bpf_ghost _wake agent() helper
e Agent Tasks (one per cpu) are special...
o Run above CFS, and are also a token marking the CPU in use by an enclave
o Not sure that is doable with BPF as easily...
e Userspace agents are asynchronous: Ghost-BPF can handle that

o Messages have sequence numbers, which are passed back to the kernel for transactions
o Makes sure the agent is acting on the current state of a task.
o Any “implement ghost userspace on BPF” scheme would need something like that
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Is Ghost right for other BPF-only scheduling frameworks?

e Important distinction between SCHED CLASS GHOST and user agents/ABI
e BPF-MSG isn't just “messages”: it's the functional APl from kernel to BPF

o It's a switch statement, like a dispatcher syscall, e.g. fcntl()
o You could have a separate PROG_TYPE for every message
e Even if you wanted only BPF schedulers, I'd still want the BPF-MSG interface

o e.g. MSG_TASK_NEW: it's generated in 7 places in ghost.c! Lots of nuances about when
threads change classes: were they on_cpu, were they about to block, did they join and leave
before blocking, etc...

e Ghost solves the issue of safely delegating scheduling to some other agent

o BPF or user space
o Synchronous or asynchronous
o Or at least tries to solve this issue. =)



Fin

Main points:
o Ghost: safe, extensible, kernel scheduling in both userspace and BPF-space
o You can make a purely-BPF scheduler with Ghost
o  BiIff: basic policy, example code for making your own scheduler
o TBD: CFS, more advanced schedulers, MAP_TYPES, etc.

Rough code
o https://qithub.com/google/ghost-kernel
o https://github.com/google/ghost-userspace
o Tends to lag our in-house changes. Sorry.
o Have to use “basel” to build the userspace libraries, for now. Sorry.
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https://github.com/google/ghost-kernel/
https://github.com/google/ghost-userspace

FAQ
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FAQ: what about BPF task local storage?

e Per-task storage:
o void *bpf _task storage get(struct bpf _map *map, struct task_struct *task, void *value, u64 flags)

e Can we use it? Not really.
o ghost-bpf doesn’t have visibility into the kernel’s data structures
o the contexts are ABI structs, e.g. struct bpf _ghost_msg
o Tasks are referred to by ID, not by struct task_struct *.

e Even if you did use task storage, it's not accessible to userspace (agent or
application)
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FAQ: can you do hybrid BPF and Userspace Agents?

e COiriginal use of BPF was to accelerate and supplement userspace agents

(@)

| sketched this out at LPC 21 (slide 29)

e BPF-MSG's return value of 1 means “don’t send this message to userspace”

(@)

(@)

BPF-MSG can filter messages
e.g. MSG_CPU_TICK (timer tick fired) - don’t need to hear about that all the time!

e Ghost’'s message API was originally designed for slower, userspace agents

(@)

e.g. there was no MSG_CPU_UNAVAILABLE / AVAILABLE, since CPUs would come and go too
quickly (whenever a CFS thread landed on_rq).

When tasks “SwitchTo” (Google’s fast context switch syscall, Turner LPC 13), we don’t send
messages. Only send a message when a task starts a “switchto chain”

Too many messages for userspace, but not for BPF!
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https://lpc.events/event/11/contributions/954/attachments/776/1463/eBPF%20in%20CPU%20Scheduler.pdf
https://github.com/google/ghost-kernel/blob/ghost-v5.11/include/uapi/linux/ghost.h#L287
https://blog.linuxplumbersconf.org/2013/ocw/proposals/1653
https://github.com/google/ghost-kernel/blob/ghost-v5.11/include/uapi/linux/ghost.h#L363

FAQ: what other BPF limitations have you run into?

e Limited loops, no floating point, communicate through Maps only, etc.
e Atomic compare and swap on 64 bit only

e Hand-written smp_store release()?

m Tried _atomic_store n(&some_ bool, false, ATOMIC RELEASE)
m Had to do asm volatile ("" ::: "memory"); WRITE_ONCE(some_bool, false);
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FAQ: what is the status word?

e The ghost kernel exports an mmapable file called the status word table
o Every task in ghost has an entry in here
o Contains info like “are you on_cpu” or “are you runnable”
o Read-only to userspace
o It's a dense mapping: every task has an index into the table. O(65k) entries.
o Made for fast info sharing to userspace agents, predates ghost-bpf.

e Biff uses a task’s status word index for its equivalent table: Status Word Data

o We really just need an index allocator

o  Technically, we could have a QUEUE map of ints, loaded with 65k entries by userspace
o The kernel gives us the status word index, so let’s use it

o Though we could implement the status_word in BPF!
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FAQ: what is an enclave?

e Enclave: a set of CPUs scheduled by a single Ghost agent

e Semi-hard partition: you can move CPUs between enclaves, but it requires
the agent to yield the CPU

e One ghost-bpf program per attachpoint (e.g. BPF-MSG) per enclave

e BPF programs may run on CPUs outside an enclave
o Consider a task woken up by an unrelated task on a cpu outside the enclave
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FAQ: what about the global scheduling model?

e This is having a single CPU (in userspace) spin and schedule all of the cpus

o Outlined at LPC 21 (slide 24-26)
o  Without BPF on every cpu, particularly BPF-PNT, you're just too slow for certain applications

e You can have a thread spin in userspace, monitoring and updating bpf maps
e You can pursue a hybrid approach, where that userspace thread occasionally
overrides BPF. But synchronization is a pain. I've tried, and it's tricky.
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https://lpc.events/event/11/contributions/954/attachments/776/1463/eBPF%20in%20CPU%20Scheduler.pdf

FAQ: why not hook select_task rq()?

Determines which cpu’s struct rq (runqueue) to enqueue a waking task on
The in-kernel RQ doesn’t really matter: the “real” RQ is in the agent

When Ghost runs a task (bpf_ghost run_gtid() or a transaction) it will migrate
the task_struct from whichever struct rq it was on to the target struct rq

If you knew where a task was likely to run, then putting it there when it wakes
could be a slight performance win

But not nearly as important as it is for in-kernel CFS
o select task rq() is part of the scheduling policy for the kernel. But not for ghost.

Have a per-enclave tunable for whether to wake on waker’s or wakee’s cpu
Maybe we’'ll add a hook for select_task rq() if it's important
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FAQ: what are the RQ locking rules with ghost-bpf?

e An RQ lock is held during BPF-MSG
o Ifthe message is for task X, we hold the RQ lock for that task’s RQ
e No RQ is locked during BPF-PNT

o This is so we can call bpf_ghost_run_gtid(task), which needs to grab both the task’s RQ lock
and the current cpu’s RQ lock.
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FAQ: any other Ghost improvements on the horizon?

e Maybe more BPF helpers:

o “kill my agent / enclave”: things went poorly and we want to tear down the system

o <Insert Your Helper Here>
e Remove userspace support stuff from kernel/sched/ghost.c: truly BPF-only!

Perhaps that will make Ghost more upstreamable?
e Agents in other languages: since we aren’t scheduling with the agent tasks,
we don’t need to write in low-level code (C or Rust). Just interact with Maps

(Go, Python, whatever)
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Fin

Main points:
o Ghost: safe, extensible, kernel scheduling in both userspace and BPF-space
o You can make a purely-BPF scheduler with Ghost
o  BiIff: basic policy, example code for making your own scheduler
o TBD: CFS, more advanced schedulers, MAP_TYPES, etc.

Rough code
o https://qithub.com/google/ghost-kernel
o https://github.com/google/ghost-userspace
o Tends to lag our in-house changes. Sorry.
o Have to use “basel” to build the userspace libraries, for now. Sorry.
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