| S

eBPF Kernel Scheduling with Ghost

Barret Rhoden
brho@google.com

Linux
Plumbers Conference | publin, ireland Sept. 12-14, 2022

Agenda

Ghost Primer

How BPF works in Ghost

“BPF-Only Scheduling”

Biff: the world’s dumbest BPF-only scheduler
Future work

Discussion

FAQ

Ghost Primer

What is Ghost?

Kernel scheduler class, below CFS in priority

Scheduling decisions made in userspace by an agent process
Kernel sends messages to the agent: “task X blocked on cpu 6
Agent issues transactions to the kernel: “run task X on cpu 12”

Kernel User

space ! space Application !
! Optional scheduling hintsi

Kernel : Thread/CPU Messages v
= Ghost agents
Ghost : . Q
scheduling class| | Transactions

: CPU scheduling
i decisions

Do No Harm

e Using Ghost should not hurt the OS: agent fault isolation

e Even during operation, ghost cannot hurt the rest of the system
o Below CFS in priority: CFS preempts Ghost tasks
o Including kernel threads: don’t want to stop those!

e [f the agent fails, all tasks get moved back to CFS

e Failure is configurable, and also triggerable by userspace:
o Kernel notices a runnable task doesn’t get on cpu for X msec
o Userspace daemon (borglet, kubelet) notices errors or poor performance
o Application notices errors or poor performance

Multiple Agents per Machine

e Ghost sched class supports distinct, independent agents

e Enclave: a set of CPUs scheduled by a single Ghost agent

e Semi-hard partition: you can move CPUs between enclaves, but it requires
the agent to yield the CPU

e Agent live-update mechanism to hand off control of an enclave

o O(msec)
o Have the new agent ready to go, kill the old one, etc.

How BPF works in Ghost

BPF in Ghost

e Agent process attaches a BPF program: BPF is an extension of the agent
e Messages -> BPF_GHOST MSG_SEND
e Transactions -> BPF_GHOST SCHED_PNT (pick_next task)

User
e space
Kernel BPF
space space” Application 4
Optional scheduling hintsi
Kernel Thread/CPU Messages v
Ghost agents
BPF-MSG
Ghost . Q
scheduling class| | Transactions
CPU scheduling
Sl decisions

Ghost BPF Program Types: called from the kernel

e BPF-MSG: BPF_PROG TYPE_GHOST MSG

o Context is struct bpf_ghost_msg
o Attached at produce_for_task(struct task_struct *p, struct bpf_ghost msg *msgQ)
o e.g. MSG_TASK_WAKEUP: “task 6 woke on cpu 15”

e BPF-PNT: BPF_PROG TYPE_GHOST SCHED
o Context is struct bpf_ghost _sched
o Attached in pick_next_task_ghost()
o Essentially picks the next task to run on this cpu, via a helper

https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L3411
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost.c#L815

Ghost Messages: the functional API for BPF-MSG

Task Messages:

MSG_TASK_NEW
MSG_TASK_BLOCKED
MSG_TASK_WAKEUP
MSG_TASK_PREEMPT
MSG_TASK_YIELD
MSG_TASK_DEPARTED
MSG_TASK_DEAD
MSG_TASK_SWITCHTO
MSG_TASK_AFFINITY CHANGED
MSG_TASK_LATCHED

CPU Messages:

MSG_CPU_TICK
MSG_CPU_TIMER_EXPIRED
MSG_CPU_NOT IDLE
MSG_CPU_AVAILABLE
MSG_CPU_BUSY
MSG_CPU AGENT BLOCKED
MSG_CPU_AGENT WAKEUP

(sofar...)

10

Ghost BPF Helpers: interface to the kernel

e bpf ghost wake agent(cpu)
o kick the userspace agent on a cpu

e bpf ghost run_gtid(task, ...)
o set task to run next on this cpu
o called from BPF-PNT only

e bpf ghost resched_cpu(cpu)
o force cpu to reschedule (sets need resched)

https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1090
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1119
https://github.com/google/ghost-kernel/blob/ghost-v5.11/kernel/sched/ghost_core.c#L1151

BPF Programs are part of the Agent

e Act as an agent ‘thread’, with similar privileges as userspace

e Closely coupled to the userspace agent
o Embedded in the agent binary, libbpf-style
o Have the same lifetime as the agent
e Share memory with the userspace agent
o e.g. BPF_MAP_TYPE_ARRAY: mmapped by userspace
e “BPF Space” or “Ring-B”: analogous to x86 Ring-3:
o Array maps are windows into the agent’s address space

o bpf helpers are the entry points to the kernel, like syscalls
o BPF_PROG_RUN attach points are the interrupt descriptor table vectors.

12

BPF-Only Scheduling

13

“BPF-only” Scheduling

e All scheduling decisions are made in BPF
e Userspace has a role, but it is not in the critical path

Application
/,‘ ~o
A(/’ - "~ a
Kernel Messages
e
SRR BPF Agents Userspace Agents
Ghost . Q N BPF R
scheduling class| | . Transactions Maps
CPU scheduling Statistics, Parameter
BPF-PNT - . .
decisions Tweaking, Monitoring

14

Why Schedule in BPF instead of Userspace?

e Alternative: context switch to that cpu’s agent task and let it handle messages
and pick_next_task.

e Three reasons BPF is better:
o No context switches! (Depends on your app if this matters)
o Don’t have to preempt a running task to run that cpu’s agent.
m e.g. Task 6 wakes up. Don’t have to preempt another task to tell the agent about it.
o BPF is synchronous! Solves a lot of heartache.
m Hold the rq lock during bpf-msg, but not in bpf-pnt
m In schedule()->pick_next_task() for bpf-pnt

e Downsides
o Harder programming environment: limited loops, etc.

o Eventdriven: harder to “spawn a background thread”
o Data structures are limited to BPF Map types

15

Biff: a simple BPF-only scheduler

16

Biff Scheduler: world’s simplest BPF agent

e Global FIFO scheduling policy! global rq: BPF_MAP_TYPE_ QUEUE

int biff_pnt(struct bpf_ghost_sched *ctx)
{
bpf_map_pop_elem(&global_rq, next);
bpf_ghost_run_gtid(next, ...);
}

int biff_msg_send(struct bpf_ghost_msg *msg)
{
switch (msg->type) {
case MSG_TASK_WAKEUP:
case MSG_TASK_PREEMPT:
case MSG_TASK_YIELD:
bpf_map_push_elem(&global_rq, msg->gtid, 0);
break;

https://github.com/google/ghost-userspace/blob/main/third_party/bpf/biff.bpf.c

Biff

The ‘real’ Biff scheduler is a little more complicated

Error handling, accounting helpers, etc.

Any non-trivial scheduler will need to track per-cpu and per-thread data
Biff is a policy-less tutorial for how you can track data and share it with
userspace or an application

18

Biff Maps

e Cpu_data: per-cpu data

o struct biff_bpf _cpu_data { current_task; etc; } You can even pass this FD over a
o BPF_MAP_TYPE_ARRAY, mmappable by userspace unix socket to the application to let

o indexed by cpu id them tell us per-workload hints!

e sw_data: per-task data
o struct biff_bpf sw_data { runnable_at; last ran_at; etc; } /

o BPF_MAP_TYPE_ARRAY, mmappable by userspace

o indexed by a task’s status_word_index (densely allocated integer per task)
e sw_lookup:

o BPF_MAP_TYPE_HASH

o From task id (gtid) to status_word_index

19

Biff Helper Examples

static void task_stopped(int cpu)

{
struct biff_bpf_cpu_data *pcpu;
pcpu = bpf_map_lookup_elem(&cpu_data, &cpu);
if (!pcpu)
return;
pcpu->current = 0;
}

/* Forces the cpu to reschedule and eventually call bpf-pnt.

static int resched_cpu(int cpu)

{
struct biff_bpf_cpu_data *pcpu;
pcpu = bpf_map_lookup_elem(&cpu_data, &cpu);
if (!pcpu)
return -1;
return bpf_ghost_resched_cpu(cpu, pcpu->cpu_segnum);
}

*/

20

Biff Actual Message Handler

static void __attribute__((noinline)) handle_wakeup(struct bpf_ghost_msg *msg)

{

struct ghost_msg_payload_task_wakeup *wakeup = &msg->wakeup;

struct biff_bpf_sw_data *swd;
u64 gtid = wakeup->gtid;
u64 now = bpf_ktime_get_us();

swd = gtid_to_swd(gtid);
if (!swd)

\ . . .
noinline and casting games...

return;

swd->runnable_at = now;

enqueue_task(gtid, msg->seqnum);

Get per-thread struct, do
your accounting

Enqueue: whatever policy you want.
Biff just sticks it in the global FIFO map

21

Gotcha! Why is handle wakeup() noinline?

e ‘“dereference of modified ctx ptr R6 off=3 disallowed”
e The context is:

struct bpf_ghost_msg {

struct ghost_msg_payload_task_dead dead;
struct ghost_msg_payload_task_blocked blocked;

struct ghost_msg_payload_task_wakeup wakeup;

e Need to trick the compiler to not modify the register holding the ctx pointer?

e The verifier should think the context is fully modifiable...
o ghost msg is valid access() returns true

e |I'm probably messing up something...

22

Future Work

23

Implement the CFS algorithm in BPF

e Is it possible to implement complex scheduling policies purely in BPF?

o e.g. loop limitations.
o New MAP_TYPES needed?

e \What changes are needed to Ghost? Are BPF-PNT and BPF-MSG sufficient?

e What is the “Ghost Tax”, the performance overhead of our mechanisms?

o By having the same policy as kernel-CFS, we can do an apples-to-apples comparison
o Also would like to try CFS in ghost-userspace

e Can tweak CFS-on-Ghost beyond the existing sysfs settings
o And can do so for a subset of cpus instead of the entire machine

24

New MAP_TYPE for a Priority Queue / Heap?

Would like a Map that’s an O(log n) tree, e.g. rb tree

bpf rbtree map (REC from davemarchevsky@fb.com)

Probably can’t just use existing bpf_map_helpers

update, delete, pop, etc. probably aren’t expressive enough for an rb tree.

25

https://lore.kernel.org/bpf/20220722183438.3319790-1-davemarchevsky@fb.com/

New MAP_TYPE “preexisting memory blob™?

e All RAM for bpf maps is allocated by kernel/bpf/ code

e What if | want to look at a blob that came from somewhere else?
o e.g.adevice
o e.g.I'm paravirtualized, and it is a host memory blob

e Want to treat it like an array map
e Instead of kmalloc (or vmalloc), it's pinned memory (GUP, etc.)

26

Discussion

27

Can you implement Ghost’s ABI purely in BPF?

e status word table: (dense map of thread data, updated by the kernel)
o Make it a BPF array map, managed by BPF-MSG handlers
e Ghost’'s message infrastructure (channels, power-of-two rings, etc.)
o BPF ring buffers + bpf_ghost _wake agent() helper
e Agent Tasks (one per cpu) are special...
o Run above CFS, and are also a token marking the CPU in use by an enclave
o Not sure that is doable with BPF as easily...
e Userspace agents are asynchronous: Ghost-BPF can handle that

o Messages have sequence numbers, which are passed back to the kernel for transactions
o Makes sure the agent is acting on the current state of a task.
o Any “implement ghost userspace on BPF” scheme would need something like that

28

Is Ghost right for other BPF-only scheduling frameworks?

e Important distinction between SCHED CLASS GHOST and user agents/ABI
e BPF-MSG isn't just “messages”: it's the functional APl from kernel to BPF

o It's a switch statement, like a dispatcher syscall, e.g. fcntl()
o You could have a separate PROG_TYPE for every message
e Even if you wanted only BPF schedulers, I'd still want the BPF-MSG interface

o e.g. MSG_TASK_NEW: it's generated in 7 places in ghost.c! Lots of nuances about when
threads change classes: were they on_cpu, were they about to block, did they join and leave
before blocking, etc...

e Ghost solves the issue of safely delegating scheduling to some other agent

o BPF or user space
o Synchronous or asynchronous
o Or at least tries to solve this issue. =)

Fin

Main points:
o Ghost: safe, extensible, kernel scheduling in both userspace and BPF-space
o You can make a purely-BPF scheduler with Ghost
o BiIff: basic policy, example code for making your own scheduler
o TBD: CFS, more advanced schedulers, MAP_TYPES, etc.

Rough code
o https://qithub.com/google/ghost-kernel
o https://github.com/google/ghost-userspace
o Tends to lag our in-house changes. Sorry.
o Have to use “basel” to build the userspace libraries, for now. Sorry.

30

https://github.com/google/ghost-kernel/
https://github.com/google/ghost-userspace

FAQ

31

FAQ: what about BPF task local storage?

e Per-task storage:
o void *bpf _task storage get(struct bpf _map *map, struct task_struct *task, void *value, u64 flags)

e Can we use it? Not really.
o ghost-bpf doesn’t have visibility into the kernel’s data structures
o the contexts are ABI structs, e.g. struct bpf _ghost_msg
o Tasks are referred to by ID, not by struct task_struct *.

e Even if you did use task storage, it's not accessible to userspace (agent or
application)

32

FAQ: can you do hybrid BPF and Userspace Agents?

e COiriginal use of BPF was to accelerate and supplement userspace agents

(@)

| sketched this out at LPC 21 (slide 29)

e BPF-MSG's return value of 1 means “don’t send this message to userspace”

(@)

(@)

BPF-MSG can filter messages
e.g. MSG_CPU_TICK (timer tick fired) - don’t need to hear about that all the time!

e Ghost’'s message API was originally designed for slower, userspace agents

(@)

e.g. there was no MSG_CPU_UNAVAILABLE / AVAILABLE, since CPUs would come and go too
quickly (whenever a CFS thread landed on_rq).

When tasks “SwitchTo” (Google’s fast context switch syscall, Turner LPC 13), we don’t send
messages. Only send a message when a task starts a “switchto chain”

Too many messages for userspace, but not for BPF!

33

https://lpc.events/event/11/contributions/954/attachments/776/1463/eBPF%20in%20CPU%20Scheduler.pdf
https://github.com/google/ghost-kernel/blob/ghost-v5.11/include/uapi/linux/ghost.h#L287
https://blog.linuxplumbersconf.org/2013/ocw/proposals/1653
https://github.com/google/ghost-kernel/blob/ghost-v5.11/include/uapi/linux/ghost.h#L363

FAQ: what other BPF limitations have you run into?

e Limited loops, no floating point, communicate through Maps only, etc.
e Atomic compare and swap on 64 bit only

e Hand-written smp_store release()?

m Tried _atomic_store n(&some_ bool, false, ATOMIC RELEASE)
m Had to do asm volatile ("" ::: "memory"); WRITE_ONCE(some_bool, false);

34

FAQ: what is the status word?

e The ghost kernel exports an mmapable file called the status word table
o Every task in ghost has an entry in here
o Contains info like “are you on_cpu” or “are you runnable”
o Read-only to userspace
o It's a dense mapping: every task has an index into the table. O(65k) entries.
o Made for fast info sharing to userspace agents, predates ghost-bpf.

e Biff uses a task’s status word index for its equivalent table: Status Word Data

o We really just need an index allocator

o Technically, we could have a QUEUE map of ints, loaded with 65k entries by userspace
o The kernel gives us the status word index, so let’s use it

o Though we could implement the status_word in BPF!

35

FAQ: what is an enclave?

e Enclave: a set of CPUs scheduled by a single Ghost agent

e Semi-hard partition: you can move CPUs between enclaves, but it requires
the agent to yield the CPU

e One ghost-bpf program per attachpoint (e.g. BPF-MSG) per enclave

e BPF programs may run on CPUs outside an enclave
o Consider a task woken up by an unrelated task on a cpu outside the enclave

36

FAQ: what about the global scheduling model?

e This is having a single CPU (in userspace) spin and schedule all of the cpus

o Outlined at LPC 21 (slide 24-26)
o Without BPF on every cpu, particularly BPF-PNT, you're just too slow for certain applications

e You can have a thread spin in userspace, monitoring and updating bpf maps
e You can pursue a hybrid approach, where that userspace thread occasionally
overrides BPF. But synchronization is a pain. I've tried, and it's tricky.

37

https://lpc.events/event/11/contributions/954/attachments/776/1463/eBPF%20in%20CPU%20Scheduler.pdf

FAQ: why not hook select_task rq()?

Determines which cpu’s struct rq (runqueue) to enqueue a waking task on
The in-kernel RQ doesn’t really matter: the “real” RQ is in the agent

When Ghost runs a task (bpf_ghost run_gtid() or a transaction) it will migrate
the task_struct from whichever struct rq it was on to the target struct rq

If you knew where a task was likely to run, then putting it there when it wakes
could be a slight performance win

But not nearly as important as it is for in-kernel CFS
o select task rq() is part of the scheduling policy for the kernel. But not for ghost.

Have a per-enclave tunable for whether to wake on waker’s or wakee’s cpu
Maybe we’'ll add a hook for select_task rq() if it's important

38

FAQ: what are the RQ locking rules with ghost-bpf?

e An RQ lock is held during BPF-MSG
o Ifthe message is for task X, we hold the RQ lock for that task’s RQ
e No RQ is locked during BPF-PNT

o This is so we can call bpf_ghost_run_gtid(task), which needs to grab both the task’s RQ lock
and the current cpu’s RQ lock.

39

FAQ: any other Ghost improvements on the horizon?

e Maybe more BPF helpers:

o “kill my agent / enclave”: things went poorly and we want to tear down the system

o <Insert Your Helper Here>
e Remove userspace support stuff from kernel/sched/ghost.c: truly BPF-only!

Perhaps that will make Ghost more upstreamable?
e Agents in other languages: since we aren’t scheduling with the agent tasks,
we don’t need to write in low-level code (C or Rust). Just interact with Maps

(Go, Python, whatever)

40

Fin

Main points:
o Ghost: safe, extensible, kernel scheduling in both userspace and BPF-space
o You can make a purely-BPF scheduler with Ghost
o BiIff: basic policy, example code for making your own scheduler
o TBD: CFS, more advanced schedulers, MAP_TYPES, etc.

Rough code
o https://qithub.com/google/ghost-kernel
o https://github.com/google/ghost-userspace
o Tends to lag our in-house changes. Sorry.
o Have to use “basel” to build the userspace libraries, for now. Sorry.

41

https://github.com/google/ghost-kernel/
https://github.com/google/ghost-userspace

