
Instant Detection of Virtual Devices

LINUX PLUMBERS CONFERENCE 2022

Ajay Kaher (akaher@vmware.com)
Alexey Makhalov (amakhalov@vmware.com)

Ashwin Dayanand Kamat (kashwindayan@vmware.com)

Agenda

2

- Importance of Boot-time for Virtual Machines

- Initialization time of Virtual Devices

- MMIO Direct Read, Skip-write, Pre-configured PCIe config

- Improvement and Suggestions

Importance of Boot-time for Virtual Machines

3

• CRX (Container Runtime for ESXi), it’s a VM based Secure Container

• Kata containers is a secure container runtime with lightweight virtual machines

• Faster boot is a critical feature for CRX, Kata containers which compliments it to behave like a container

Importance of Boot-time for Virtual Machines

4

• CRX (Container Runtime for ESXi), it’s a VM based Secure Container

• Kata containers is a secure container runtime with lightweight virtual machines

• Faster boot is a critical feature for CRX, Kata containers which compliments it to behave like a container

5

Problem Statement: Initialization time of Virtual Devices (>50% of Kernel boot time)

5

• Significant amount of time is taken in Devices Detection and Initialization, as highlighted with red line

• CRX boot time is ~100ms and ~52ms is to initialize the virtual devices (>50% of Kernel boot time)

• ~52ms is because of the ‘PCIe config Read/Write’ calls from guest.

Goal: Reduce Initialization time of Virtual Devices

VM Power On Devices
Initialization

start

Devices
Initialization

end

Kernel Boot
complete

Devices
Discovery

start

Initialization time of Virtual Devices ~52ms

Container startup time (< 100ms)

Process
Start

PCIe config Read/Write operations

6

• Each PCIe config R/W operation takes ~10us

• Guest executes VM exit/resume commands to communicate with virtual devices in the host

• CRX with average configuration performs ~3250 PCIe config Read/Write during boot.

Execution flow of PCIe config R/W operation

Guest

PCIe config
R/W operation

VMexit

Context switch

PCIe device virtualization code

Context switch

Resume
Guest Execution

VMresume

Execution flowPCIe config space

PCIe config RW ~10us

Hypervisor

Solution: MMIO Direct Read

7

• Map virtual device PCIe mmconfig structure to MMIO region of the Guest

• The memory region is mapped as "read-only”

• Writes would still be trapped and handle by hypervisor

• No need to map complete 256MB of Mmconfig, only necessary page(s) per device/bridge will be mapped

• Side effect: If any action requires it hypervisor end while reading that will be skipped.

Guest

PCIe config
R/W operation

VMexit

Context switch

PCIe device virtualization code

Context switch

Resume
Guest Execution

VMresume

Execution flowPCIe config space

PCIe config read operation
(direct read of mapped data)

Data flow

PIO, MMIO vs MMIO Direct Read

Hypervisor

Improvement: MMIO Direct Read

8

- These readings are from Linux Kernel v5.10, on VMware hypervisor.

- This helps to reduce virtual machine PCI scan and initialization time by ~65% (52ms to 19ms)

0

5

10

15

PIO MMIO MMIO Direct Read

12.809 sec

8.517 sec

100,000 reads using raw_pci_read()

Improvement: MMIO Direct Read

9

- These readings are from Linux Kernel v5.10, on VMware hypervisor.

- This helps to reduce virtual machine PCI scan and initialization time by ~65% (52ms to 19ms)

0

5

10

15

PIO MMIO MMIO Direct Read

12.809 sec

8.517 sec

0.010 sec

100,000 reads using raw_pci_read()

Solution: Skip write, Pre-initialized (cont.)

10

Skip Write: 12% Improvement

Read value using Direct READ

Execute PCI write

same value?
Yes

No

Sk
ip

 P
C

I w
rit

e

Pre-initialized: 2% Improvement and more possible

0x0000

Type 0 or 1
PCI Config

Capabilities

Extended
Capabilities

0x1000

0x0040

0x0100

0xF00

0xC0

0x40

11

0

500

1000

1500

2000

2500

3000

3500

Current MMIO Direct
Read

Skip Write Pre-initialised

Read/Write Calls

N
o

of
 R

ea
ds

/W
rit

es
 c

al
ls

0

10

20

30

40

50

60

Current MMIO Direct
Read

Skip Write Pre-initialised

Boot time of Virtual Devices

M
ill

i-S
ec

on
ds

 (m
Se

c)

Improvement: Boot time of Virtual Devices

12

MMIO Direct Read: ~65%

Skip write: ~78%

Pre-Initialised: ~80%

0

500

1000

1500

2000

2500

3000

3500

Current MMIO Direct
Read

Skip Write Pre-initialised

Read/Write Calls

N
o

of
 R

ea
ds

/W
rit

es
 c

al
ls

0

10

20

30

40

50

60

Current MMIO Direct
Read

Skip Write Pre-initialised

Boot time of Virtual Devices

M
ill

i-S
ec

on
ds

 (m
Se

c)

Improvement: Boot time of Virtual Devices

13

Following up work:
- Following patch in discussion:

[PATCH v2] x86/PCI: Prefer MMIO over PIO on hypervisor

- KVM community also looking into KVM, QEMU to implement ‘PCIe MMIO Direct READ’:
- [PATCH v2 0/3] KVM: x86: KVM_MEM_PCI_HOLE memory

https://lkml.org/lkml/2022/9/6/119
https://lore.kernel.org/kvm/20200807141232.402895-1-vkuznets@redhat.com/

Looking for suggestion/feedback on:

14

- Are we creating a security loophole?

- If there is a mismatch in page size of the Host and the PCIe config page size, the solution does not work as intended.

For example: if the Host is configured with a page size of 64 KB, and given that Guest PCIe config pages are 4 KB, it
leads to inefficient use of Host memory or overlapping.

Following up work:
- Following patch in discussion:

[PATCH v2] x86/PCI: Prefer MMIO over PIO on hypervisor

- KVM community also looking into KVM, QEMU to implement ‘PCIe MMIO Direct READ’:
- [PATCH v2 0/3] KVM: x86: KVM_MEM_PCI_HOLE memory

https://lkml.org/lkml/2022/9/6/119
https://lore.kernel.org/kvm/20200807141232.402895-1-vkuznets@redhat.com/

Thanks

15

Solution: MMIO Direct Read (cont.)

16

Guest Address Space VMX Address Space

PCIe conf page

PCIe config page

MMconfig

PCIe config page

PCIe config page

PCIe config page

MMConfig

Main memory
PCIe config page

• No need to map complete 256MB of MMconfig

• Only necessary page(s) per device/bridge will be mapped

PCIe configuration space

17

PCIe config space per Function = 4 KB
PCIe config space per Device = 8*4 KB = 32 KB
PCIe config space per Bus = 32*32 KB = 1 MB
PCIe config space = 256*1 MB = 256 MB

1MB

0

0

256MB

4KB

Write technique

CONFIDENTIAL 18

