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Agenda
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- Importance of Boot-time for Virtual Machines

- Initialization time of Virtual Devices

- MMIO Direct Read, Skip-write, Pre-configured PCIe config

- Improvement and Suggestions



Importance of Boot-time for Virtual Machines
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• CRX (Container Runtime for ESXi), it’s a VM based Secure Container

• Kata containers is a secure container runtime with lightweight virtual machines

• Faster boot is a critical feature for CRX, Kata containers which compliments it to behave like a container
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Problem Statement: Initialization time of Virtual Devices (>50% of Kernel boot time)
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• Significant amount of time is taken in Devices Detection and Initialization, as highlighted with red line 

• CRX boot time is ~100ms and ~52ms is to initialize the virtual devices (>50% of Kernel boot time)

• ~52ms is because of the ‘PCIe config Read/Write’ calls from guest.

Goal: Reduce Initialization time of Virtual Devices

VM Power On Devices 
Initialization

start

Devices 
Initialization

end

Kernel Boot
complete

Devices
Discovery

start

Initialization time of Virtual Devices ~52ms

Container startup time (< 100ms)

Process
Start



PCIe config Read/Write operations
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• Each PCIe config R/W operation takes ~10us 

• Guest executes VM exit/resume commands to communicate with virtual devices in the host

• CRX with average configuration performs ~3250 PCIe config Read/Write during boot.

Execution flow of PCIe config R/W operation
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Execution flowPCIe config space
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Hypervisor



Solution: MMIO Direct Read
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• Map virtual device PCIe mmconfig structure to MMIO region of the Guest

• The memory region is mapped as "read-only”

• Writes would still be trapped and handle by hypervisor

• No need to map complete 256MB of Mmconfig, only necessary page(s) per device/bridge will be mapped

• Side effect: If any action requires it hypervisor end while reading that will be skipped.
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Hypervisor



Improvement: MMIO Direct Read
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- These readings are from Linux Kernel v5.10, on VMware hypervisor.

- This helps to reduce virtual machine PCI scan and initialization time by ~65% (52ms to 19ms)
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Improvement: MMIO Direct Read
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- These readings are from Linux Kernel v5.10, on VMware hypervisor.

- This helps to reduce virtual machine PCI scan and initialization time by ~65% (52ms to 19ms)
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Solution: Skip write, Pre-initialized (cont.)
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Skip Write: 12% Improvement
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MMIO Direct Read: ~65%

Skip write: ~78%

Pre-Initialised: ~80%
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Following up work:
- Following patch in discussion:

[PATCH v2] x86/PCI: Prefer MMIO over PIO on hypervisor

- KVM community also looking into KVM, QEMU to implement ‘PCIe MMIO Direct READ’:
- [PATCH v2 0/3] KVM: x86: KVM_MEM_PCI_HOLE memory

https://lkml.org/lkml/2022/9/6/119
https://lore.kernel.org/kvm/20200807141232.402895-1-vkuznets@redhat.com/


Looking for suggestion/feedback on:

14

- Are we creating a security loophole?

- If there is a mismatch in page size of the Host and the PCIe config page size, the solution does not work as intended. 

For example: if the Host is configured with a page size of 64 KB, and given that Guest PCIe config pages are 4 KB, it 
leads to inefficient use of Host memory or overlapping.

Following up work:
- Following patch in discussion:

[PATCH v2] x86/PCI: Prefer MMIO over PIO on hypervisor

- KVM community also looking into KVM, QEMU to implement ‘PCIe MMIO Direct READ’:
- [PATCH v2 0/3] KVM: x86: KVM_MEM_PCI_HOLE memory

https://lkml.org/lkml/2022/9/6/119
https://lore.kernel.org/kvm/20200807141232.402895-1-vkuznets@redhat.com/


Thanks
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Solution: MMIO Direct Read (cont.)
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Guest Address Space VMX Address Space

PCIe conf page
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• No need to map complete 256MB of MMconfig

• Only necessary page(s) per device/bridge will be mapped



PCIe configuration space
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PCIe config space per Function  =  4 KB
PCIe config space per Device     =  8*4 KB  = 32 KB
PCIe config space per Bus          =  32*32 KB = 1 MB
PCIe config space                       =  256*1 MB = 256 MB
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Write technique 
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