
Restartable Sequences:
Scheduler-Aware Scaling of Memory

Use on Many-Core Systems

 Linux Plumbers Conference - September 2022

1

Mathieu Desnoyers
EfficiOS Inc.

Outline

● RSEQ adoption status
● RSEQ next steps
● Per-memory-space virtual CPU ID RSEQ extension
● Scheduler context switch
● Benchmarks and schedstat profiling
● NUMA
● Discussion

2

RSEQ Adoption Status

● Architectures
○ ARM, MIPS, Power, Risc-V, s390, x86,
○ Also csky and loongarch

■ but merged upstream without user-space tests :-(
● GNU C library: rseq used since glibc-2.35

○ Used to implement sched_getcpu(3)
○ Other use-cases being discussed, e.g. memory

allocator
● tcmalloc, CRIU, DynamoRIO

3

RSEQ Next Steps

● Use-cases: memory allocators, ring buffers, counters,
● Generally remove the need to configure user-space data

structure partitioning based on the number of threads vs
cores [1]:
○ Global (few threads),
○ Per-thread (nr_threads <= nr_cores),
○ Per-core (nr_threads >= nr_cores).

● Per-CPU data memory use on single-threaded
processes.

● Per-CPU data memory use when using cpusets on
many-cores systems.

4

Per-Memory-Space Virtual CPU ID RSEQ Extension

● Idea originally from Paul Turner (Google), discussed
with him at LPC2019.

● Allocate "virtual" CPU IDs within a process, which can
be limited by the number threads running concurrently.

● The Google implementation was not publicly available,
so I implemented it myself to see what I could come up
with. [2]

5

Scheduler Context Switch

● Extend the scheduler to continuously track the number
of threads concurrently running on behalf of each mm.

● When the scheduler switches to a thread, that thread is
assigned a vcpu_id which is guaranteed to be unused
by any other thread from the same memory space until
the thread is scheduled out.

● This can be done with a per-mm bitmap
(mm_vcpumask) bounded by the number of possible
cpus on the system. Updates are atomic bit test-and-set
and atomic bit clear.

● Additional atomic operations on scheduler context
switch fast-path is frowned upon for good reasons.

6

Benchmarks (hackbench)
Scheduler overhead is significant for threaded
workload without further optimization.
10 groups using 40 fd, each sender passes messages of
100 bytes, x86-64 E5-2630
● Per-process (10000 messages)

○ Baseline: 10.5±0.3 s
○ With mm vcpu_id: 10.6±0.4 s

● Per-thread (10000 messages)
○ Baseline: 15.2±0.2 s
○ With mm vcpu_id: 15.9±0.4 s (+4.6 %)

● 10 processes, each per-thread (1000 messages)
○ Baseline: 8.1±0.4 s
○ With mm vcpu_id: 8.3±0.4 s

7

Benchmarks (perf bench)

No significant scheduler overhead noticed. However
other workloads may be more sensitive.
● perf bench message (process)

○ baseline: 134±9 ms
○ vcpu-id no-optimization: 139±7 ms

● perf bench message (threaded)
○ baseline: 114±7 ms
○ vcpu-id no-optimization: 111±7 ms

● perf bench message 2 instances (threaded)
○ baseline: 161±16 ms
○ vcpu-id no-optimization: 154±14 ms

● perf bench pipe
○ baseline: 8.8±2.0 s
○ vcpu-id no-optimization: 8.2±1.7 s

8

Virtual CPU-ID Allocator: Opt-in vs Always-on

● Considering the impact on scheduler performance,
Google's approach [3] is to make the vcpu-id allocation
opt-in per-process.

● If our aim is to have glibc use this for its memory
allocator, the opt-in approach simply won't help in the
long run. We need to consider the performance impact
more carefully.

9

Performance improvements

● Single-threaded mm
○ Statically use vcpu-id 0

■ except on NUMA, where a different constant can
be returned for each NUMA node.

● Scheduling between threads from the same mm
○ Hand over the vcpu-id from previous to next thread.

● Scheduling between threads from different mm
○ Per-runqueue cache of (vcpu-id, mm) pairs.

10

Schedstats Counter Profiling

* perf bench sched messaging (single instance, multi-process):

On sched-switch:
 single-threaded vcpu-id: 99.98 %
 transfer between threads: 0 %
 runqueue cache hit: 0.02 %
 runqueue cache eviction (bit-clear): 0 %
 runqueue cache discard (bit-clear): 0 %
 vcpu-id allocation (bit-set): 0 %

On release mm:
 vcpu-id remove (bit-clear): 0 %

On migration:
 vcpu-id remove (bit-clear): 0 %

11

Schedstats Counter Profiling

* perf bench sched messaging -t (single instance, multi-thread):

On sched-switch:
 single-threaded vcpu-id: 0.1 %
 transfer between threads: 98.2 %
 runqueue cache hit: 1.1 %
 runqueue cache eviction (bit-clear): 0.0 %
 runqueue cache discard (bit-clear): 0.0 %
 vcpu-id allocation (bit-set): 0.3 %

On release mm:
 vcpu-id remove (bit-clear): 0.2 %

On migration:
 vcpu-id remove (bit-clear): 0.1 %

12

Schedstats Counter Profiling
* perf bench sched messaging -t (two instances, multi-thread):

On sched-switch:
 single-threaded vcpu-id: 0.1 %
 transfer between threads: 89.5 %
 runqueue cache hit: 9.7 %
 runqueue cache eviction (bit-clear): 0.0 %
 runqueue cache discard (bit-clear): 0 %
 vcpu-id allocation (bit-set): 0.4 %

On release mm:
 vcpu-id remove (bit-clear): 0.2 %

On migration:
 vcpu-id remove (bit-clear): 0.1 %

13

Schedstats Counter Profiling

* perf bench sched pipe (one instance, multi-process):

On sched-switch:
 single-threaded vcpu-id: 100.00 %
 transfer between threads: 0.00 %
 runqueue cache hit: 0.00 %
 runqueue cache eviction (bit-clear): 0 %
 runqueue cache discard (bit-clear): 0 %
 vcpu-id allocation (bit-set): 0.00 %

On release mm:
 vcpu-id remove (bit-clear): 0 %

On migration:
 vcpu-id remove (bit-clear): 0.00 %

14

Benchmarks (hackbench)
Scheduler overhead is non-significant.
10 groups using 40 fd, each sender passes messages of
100 bytes, x86-64 E5-2630

● Per-process (10000 messages)
○ Baseline: 10.5±0.3 s
○ With mm vcpu_id: 10.5±0.5 s

● Per-thread (10000 messages)
○ Baseline: 15.2±0.2 s
○ With mm vcpu_id: 15.0±0.1 s

● 10 processes, each per-thread (1000 messages)
○ Baseline: 8.1±0.4 s
○ With mm vcpu_id: 8.4±0.3 s

15

Benchmarks (perf bench)

No significant scheduler overhead noticed. However
other workloads may be more sensitive.
● perf bench message (process)

○ baseline: 134±9 ms
○ vcpu-id with-optimization: 138±7 ms

● perf bench message (threaded)
○ baseline: 114±7 ms
○ vcpu-id with-optimization: 112±7 ms

● perf bench message 2 instances (threaded)
○ baseline: 161±16 ms
○ vcpu-id with-optimization: 157±14 ms

● perf bench pipe
○ baseline: 8.8±2.0 s
○ vcpu-id with-optimization: 8.4±1.6 s

16

Benchmarks

● I would kindly ask Google to share benchmarks covering
execution of their workload with and without virtual CPU
ID when they find time to test my patches.

● Performance benefit for tcmalloc ?
● What is the overhead with/without scheduler fast-path

optimizations ?
○ Is the complexity of those optimizations needed ?

17

NUMA

● My design assumption here is that NUMA should really
be only an optimization which works "as is" (although
less efficiently) without code changes when user-space
is not NUMA-aware.

● Guarantee needed is similar to a ”real" cpu id with
respect to its NUMA topology:
○ the mapping between cpu id and NUMA node ID

stays invariant if there is no NUMA topology change.
● Guarantee for mm vcpu_id:

○ for the lifetime of a process, the mapping between
vcpu_id and NUMA node id stay invariant unless
there is a NUMA topology change in the kernel.

18

NUMA (2)

● This allow allocating NUMA-local memory on first use of
a vcpu-id, and then all following accesses to from this
vcpu-id will be NUMA-local (except NUMA topology
reconfiguration).

● Expose an additional node_id field in struct rseq, to be
loaded along with mm_vcpu_id within a rseq c.s. when
memory needs to be allocated on behalf of the current
NUMA node.

19

NUMA (3)

● Internally, this is implemented by adding the following
bitmaps to each mm:
○ vcpu-id allocation bitmap (one bitmap per NUMA

node),
○ overall NUMA node vcpu-id allocation bitmap.

● Implement "find first" operations over pairs of cpumasks:
○ cpumask_first_zero_and_zero(),
○ cpumask_first_one_and_zero().

● Updates to those NUMA-specific bitmaps only need to
be done the first time a vcpu-id is allocated for a
memory space. Fast-paths are only lookups.

20

Open Questions

● Should the scheduler use the per-NUMA-node vcpu ID
allocation bitmap into account when taking migration
decisions ?
○ This could ensure that the scheduler favors re-using

already allocated vcpu-ids rather than migrating
threads to numa nodes with few vcpu-ids allocated.

● Extend struct mm (memory space) or add a pointer to
struct mm ?

● Perhaps my runqueue { mm, vcpu_id } cache idea could
be re-used to cache mm user references as well.

● I would like to make this available for shared memory as
well (per-container). See Containers MC. [4]

21

References
[1] “Supporting per-processor local-allocation buffers using
 lightweight user-level preemption notification”, Alex
 Garthwaite, David Dice, Derek White, Proceedings of
 the 1st International Conference on Virtual Execution
 Environments, VEE 2005, Chicago, IL, USA, June 11-12,
 2005
[2] [PATCH v3 00/23] RSEQ node id and virtual cpu id
 extensions

○ https://lore.kernel.org/lkml/20220729190225.12726-1-mathieu.desnoyers@efficios.com/

[3] tcmalloc struct kernel_rseq
○ https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26

[4] “Restartable Sequences: Scaling Per-Core Shared Memory
 Use in Containers”, Linux Plumbers Conference Container
 MC

○ https://lpc.events/event/16/contributions/1238/

22

https://lore.kernel.org/lkml/20220729190225.12726-1-mathieu.desnoyers@efficios.com/
https://github.com/google/tcmalloc/blob/master/tcmalloc/internal/linux_syscall_support.h#L26
https://lpc.events/event/16/contributions/1238/

Discussion

💬
23

