
1

Linux Kernel Fastboot On the Way

Feng Tang
Intel Linux System Engineering

Linux Plumbers Conference 2019 – Lisbon Portugal

2

Kernel Fastboot

 Linux kernel fastboot is critical for all kinds of platforms

 At LPC 2008, Arjan van de Ven and Auke Kok

introduced “Booting Linux in five seconds”

 Kernel boot time has been hugely improved over years,

but is it all done? NOT YET!

3

Agenda

 Share how we optimized our platform

 Discuss the potential optimization points

4

Why we worked on boot optimization

 Hard requirement: rear camera must be

functional in 2 seconds after power on.

 The boot phase contains HW, FW, bootloader,

hypervisor, kernel and user space, pre-kernel

takes 500 ms, and the budget for kernel is 400

ms

 Initial kernel boot time is 3 seconds, finally we

cut it to 300 ms

5

ACRN (Xen like hypervisor)

Apollolake HW

Clear Linux

Android

kernel 4.19

Device Model

ABL (Automotive Boot Loader)

Platform Brief Intro

HW info:

* Apollolake 4 Core (1.9G/2.4G)

* 8GB RAM

* 16GB EMMC rootfs

SW info:

* VMM: ACRN hypervisor

* OS: Clear Linux with 4.19 LTS

kernel

6

Methodology – 3 Steps

Profile

Analyze

Optimize

7

How To Get Accurate Kernel Boot Time

 3 kernel phases
 Decompression

 Dark phase ([0.000000])

 Normal phase

 Check kernel boot time
 systemd-analyze

 printk timestamp

 “Run xxx as init process”

kernel

decompress
kernel kernel

“init”

load

clock init

Systemd-analyze

Run xxx as init

8

Profile Tools
 initcall_debug

 bootchart

 printk with absolute timestamp
 Decompress

 Dark phase

 Individual dump functions
 Async debug

 Not covered by initcall_debug

 Ftrace

9

Analyze

Profiled Data

Where

How

Hotspots

Workaround for specific HW (i915,SDHC)

Unnecessary module/config for product release

Unexpected small module costs lots of time

Know where every ms is spent

Check how and why it takes so much time

10

HW FW Bootloader User space (systemd+camera app)Kernel

Kernel

Decompression

Memory

Init

SMP

Init

ACPI FW

Init

i915

GFX

LPSS

driver

eMMC

Storage

Rootfs

Mouting

2 sec

300 ms

How the Boot Time Is Consumed

11

Hotspots Overview

 Driver asynchronous probing

 Rootfs mounting

 Memory init

 Kernel modules and kernel configs

 Graphics (i915)

 Virtualization

12

Boottime Hotspots
Kernel modules Boottime taken

i915 FB driver init 1+ sec

eDP panel detection 300 ms

ORC unwinder init 300 ms

SATA controller init 150 ms

MEI driver 300 ms

8250 driver IRQ detection 200 ms

Memory Init 150 ms

i915 init 40 ms

acpi init 60 ms

smp multi core init (4C) 30 ms

eMMC driver init 60 ms

13

Too Few Drivers Use Asynchronous Probe

 Driver Async-init framework setup 10 years ago, but rare drivers

use it

 Async probe could save a lot of time by making driver init in

parallel, like i915, network device

 To enable it, simply set driver’s probe_type to
PROBE_PREFER_ASYNCHRONOUS

 Easy to try - “driver_async_probe=driver1,driver2” in cmdline

14

Original Boot

15

Boot With Asynchronous Probe

Call for Action: Check Your Drivers

16

RootFS Mounting Is a Critical Path

 Mostly about storage drivers’ efficiency

 SATA driver init takes100 to 200 ms even without a real disk

 eMMC driver takes 50-100ms

 Move mmc driver init as early as possible

 Disable not used host controllers

 Disable not used protocols (SD/SDIO)

 Optimize driver’s internal hacky busy wait

 Add “rootwait” to cmdline

 Check the hidden asynchronous functions

17

Deferred Memory Init

 8GB RAM’s initialization costs 100+ ms

 In early boot phase, we don’t need that much memory

 Utilize the memory hotplug feature
 “mem=4096m” in cmdline to only init 2 GB

 Use systemd service to add rest memory in parallel

18

Highest CPU Frequency Booting

 CPU frequency has huge impact over boot time,

especially for those no IO related operations.

 CPU frequency is set by BIOS/FW, before cpufreq

subsystem is initialized

 Could we enable it with a kernel config option for boot

phase only?

19

Kernel Modules and Config

 Use loadable module when possible

 Disable all not-necessary modules/drivers

 Disable all debug features for release version

 Disable existing but not used HW(like SDHC/SATA controller)

 Kernel size matters

20

What Can We Do Next?

 Universality vs Performance

 In-kernel deferred memory init

 Asynchronous Probe May Mess the Device Index

 SMP initialization for bringing up other Aps

 Devices enumeration for ACPI set to be parallel

 User space optimization like systemd

21

Universality vs Performance

 Driver wants to cover all HWs with one copy of code

 Many long delay in drivers is actually to cover some

broken HW

 i915 driver’s 32 times DPCD register read

 SDHC driver’s 10ms power up delay

 Everybody pays because of them

 Can we handle them in a better way?

 add kernel parameter to tune

 add quirks

22

In-kernel Deferred Memory Init

 User space can initialize majority of the memory with

hotplug interface

 Useful for platforms with huge mount of memory

 Can we create a kernel thread to do it, which move it

form the critical path to paralleled initialization?

23

Asynchronous Probe May Mess the Device Index

 Some driver covers multiple HW controllers in the system -

uart/spi/i2c

 Asynchronous probe may mess up the controller index

 How to handle it

 Add the index into device’s private data?

24

Parallize SMP Initialization

 It takes about from 6 to 10 ms to bring up one AP,

depending on platforms

 It used to be more, has been optimized already

 Currently it is under the CPU hotplug framework, and

brought up one by one.

25

Efficient Firmware Init

 acpi_init takes 50 ~ 150 ms

 It enumerates a bunch of devices, tables

 Need to further analyze all the devices, check the

possibility to make it a 2 phases enumeration, and put

deferrable enumeration into parallel phase

26

systemd (user space)

 Systemd is ~1.5MB - the loading time for emmc is 100ms

 Can we use a small lightweight “init” program, which

starts target programs in parallel and readahead to

preload libraries and executables?

27

Credits

Thanks to Bin Yang, Alek Du, Julie Du, Ying Huang, Andi

Kleen, Tim Chen, Jianjun Liu and many others for

supporting and reviewing

28

Q&A
Thank You!

29

Backup

30

Graphics

 eDP panel detection
Driver will blindly read 32 times the DPCD registers even when

there is no eDP panel attached, which takes 300ms.

 Framebuffer device
Initially the i915 framebuffer device takes 1 second to initialize,

which is caused by the hypervisor

 FB_EMULATION option
All connectors (HDMI/DP) will be initialized one or two times,

which costs 100+ ms

31

Virtualization

 Pain point: big VM-trapped MMIO operations

 memset for 8MB frame buffer takes 1 second

 GVT spends 90ms on firmware loading

 PCI subsystem initialization takes 30 ms

 VMM should be specific about virtual device’s IRQ number

 Detecting the IRQ number of UART costs 250ms

 Better avoid IRQ auto detection

