
UtilClamp usage on
Android
Plans on adopting UtilClamp in Android for task
utilization boosting and capping

Task utilization boosting / capping

Basic idea: change utilization of a task or a task group to make it
look bigger (boosting) or smaller (capping) to the scheduler

Affects
० frequency selection - schedutil uses utilization signal for

OPP selection

० task placement decisions - EAS uses utilization signal for
task placement

!

Available mechanisms

Features SchedTune UtilClamp

 Mainline support out-of-tree custom cgroup controller core bits upstream since v5.3
cgroups support likely queued for v5.4

 APIs
cgroup v1 only, single level hierarchy

limited number of TG supported

cgroup v1/v2, unlimited nested groups
unlimited number of TG supported

procfs based system-wide defaults
syscall based per-task API

 OPPs Selection Biasing
non-linear (positive) boosting

difficult to tune
only experimental negative boosting

simple threshold based
utilization boosting/capping mechanism

 Boost Holding hardcoded 50ms WIP: tunable timeouts

 Task Placement Biasing
prefer-idle feature

for latency-sensitive but not critical tasks
Initial integration with EAS
WIP: “latency niceness” [1]

 RT Tasks Support N/A OPP biasing
WIP: capacity awareness [2]

JankBench comparison results

Test SchedTune UtilClamp

Mean
frame time
(ms)

99 percentile Power (mW) Mean frame
time (ms) 99 percentile Power (mW)

List View 3.30 6.89 274.3 3.58 (8.4%) 6.57(-4.6%) 292.1 (6.5%)

Image List View 3.64 7.07 305.2 3.45 (-5.1%) 6.36 (-9.9%) 310.3 (1.7%)

Shadow Grid 3.79 7.40 287.8 3.40 (-10.4%) 6.67 (-9.9%) 290.8 (1.0%)

Low Hitrate Text 3.86 7.38 293.6 3.71 (-4.0%) 6.56 (-11.1%) 302.9 (3.2%)

High Hitrate Text 3.43 6.98 285.0 3.36 (-2.0%) 6.34 (-9.2%) 293.5 (3.0%)

Edit Text 3.58 11.28 273.3 3.33 (-7.0%) 8.57 (-23.9%) 287.0 (5.0%)

Results are based on 10 runs of jankbench tests

UtilClamp used default top-app min clamp of 100, boosted top-app min clamp of 700

SchedTune sets freq floors when boosting while UtilClamp does not

UtilClamp uses shares to implement prefer-idle

AOSP release and kernel requirements

Android R

Kernel v5.4

Possible backports to v4.19

Rollout plans

Additional considerations

cgroups v2 vs v1

use of unified hierarchy

per-role vs per-app task grouping

Testing and Evaluation

a. cpu controller can only be enabled when all RT processes are in
the root cgroup (is this really an obstacle?)

b. cgroups under cpu controller will lead to bandwidth distribution
between them (need careful evaluation of possible unintended
consequences)

Things to work through

WIP Features

a. BOOST_HOLD feature - retain max boost level from task
enqueue for a minimum period

b. prefer_idle feature - bias CPU selection towards the least busy
one to improve task wakeup latency

c. RT tasks placement biasing

Option 1

Discussion points: prefer_idle replacement

Use two conditions as prefer-idle hint:
a. Task is boosted (cpu.uclamp_min > 0)
b. Task is allocated high shares (cpu.shares >

DEFAULT_SHARES)

If we really need also the "prefer_idle NON boosted" case maybe just
add a threshold in the condition (a) above?

Option 2 Introduce new “cpu.latency_tolerant” property.

Migration process from SchedTune to UtilClamp

Task profile changes
० Change appropriate task profiles to use cpu.uclamp_min,

cpu.uclamp_max instead of stune.boost

PowerHal hint changes
० Replace prefer_idle usage for touchboost with cpu.uclamp

boosting and increased cpu.shares or a new
cpu.latency_tolerant property

Init script changes
० Mount cpu instead of schedtune controller and create

appropriate hierarchy
० Set default clamp values

Questions ?

