Fragmenting sched domains

Valentin Schneider <valentin.schneider@arm.com>
09/09/2019
Some motivation

- Cavium ThunderX (first of its name)
- 2 sockets of 48 Armv8 CPUs
- Topology reported by devicetree
Some motivation (cont.)

- Topology quirk hinted at by some paper
- Verified with LMbench (memory bandwidth) + hierarchical clustering

8 "socklets" of 6 CPUs per socket, each sharing memory bandwidth

- [0, 8, 16, 24, 32, 40], [1, 9, 17, 25, 33, 41], ...
- [[i + 8 * j for j in range(6)] for i in range(8)]
"Improving" this specific scheduler topology

Figure: (a:b:s) == a to b (inclusive) with a stride of s

- Better hackbench results (can reach -25% runtime)
- Should give better memory bandwidth results when not overloaded
Food for thought

- Not necessarily reserved to broken special hardware
 - Smaller SD’s -> faster wakeup scan (Re: latency-nice)
 - Does it really make sense to cram so many CPUs in the same domain mask?
 - Distances not always identical from one CPU to any other
 - (NoC / NUCA relevance?)

- Does the hardcoded (SMT)/MC/DIE distinction still make sense?

- NUMA domains are built dynamically, could we extend this to the lower domains?
 - Based on different metrics/distances
 - Doesn’t have to be limited to 3 levels
 - Could improve some properties (e.g. imbalance_pct is currently hardcoded)
• Diagram from a paper by folks from PRACE (Partnership for Advanced Computing in Europe)
• Absolutely zero information about how they came up with it
Profiling flow

- Leverage LMbench to get some memory bandwidth measurement
- Make sure the data doesn’t fit in the L1, so we stress the L2
- Pin an Imbench thread on a CPU, get the score: that’s the baseline
- For each CPU base
 - For each CPU other != base
 - Pin an Imbench thread on base
 - Pin an Imbench thread on other
- If the bandwidth score of thread on base is lower than the baseline, then it was affected by other
- Add in some iterations for statistical relevance