Performance guarantees under thermal pressure

Morten Rasmussen <morten.rasmussen@arm.com>
Linux Plumbers Conference 2019, 9-11 September, Lisbon
Unpredictable compute bandwidth

• Compute bandwidth is increasingly becoming unpredictable.
• In mobile systems performance capping is a common scenario.
• User-space has no information about minimum compute bandwidth.
Is best effort compute enough?

- Current Linux kernel model:
 - User creates tasks, the kernel and platform delivers as good performance as it can.
 - User can tweak task placement and cpufreq governors (including util_clamp) but kernel and/or platform can override most of it.
- SCHED_DEADLINE is reservation-based and implies a bandwidth guarantee.
- Reservations are not cleared with thermal framework and could be impossible to fulfill.

- Should we have a “guaranteed” performance level that SCHED_DEADLINE could use for admission control?
- What level of “guarantee” should it provide?
- Who should provide it? DT, ACPI?
Task-centric thermal management

Morten Rasmussen <morten.rasmussen@arm.com>
Linux Plumbers Conference 2019, 9-11 September, Lisbon
CPU thermal management in Linux

- Most systems control thermally unsustainable compute demand by performance capping.
- Control is performance domain-centric (clock domain) capping one or more CPUs together.
 - No knowledge about relative importance of tasks on the CPUs in each performance domain.
 - No knowledge about how to best spend the thermal budget.
 - Scheduler might help tasks to “escape” capped CPUs moving the problem somewhere else.
Task-centric thermal management

- Ideally thermal management should maintain the budget while minimizing the perceived performance impact.
- Middleware/application is best positioned to decide the budget split.
- If tasks would self-adapt their compute demand, it would be even better.
Power management mechanisms

- **Applications**
 - Self-adapting apps\(^1\), util_clump capping.

- **Middleware:**
 - cgroup bandwidth controller, (util_clump capping).

- **Kernel:**
 - IPA, cpufreq (DVFS), hot-plugging, (cgroup bandwidth controller).

- **Firmware:**
 - Frequency capping.

- Adapting demand is preferable to reducing compute bandwidth.
- Middleware or Kernel steps in controlling the bandwidth if applications don’t behave.

Can we have a generic thermal budget headroom metric provided by the thermal framework?