
ARM v8.5
Memory Tagging

Extension

Vincenzo Frascino

2 © 2019 Arm Limited

Agenda

• Memory Tagging Extension Introduction

• Kernel ABI and Top Byte Ignore

• MTE Enabled Kernel Interface

• How does it work?

3 © 2019 Arm Limited

Memory Tagging Extension Introduction (1/2)

• The ARM v8.5 Memory Tagging Extension provides architectural support
for run-time, always-on detection of various classes of memory error:
• bounds violations
• use-after-free
• use-after-return
• use-out-of-scope
• use-before-initialisation

• The purpose of the extension is to aid with software debugging and to
eliminate vulnerabilities before they can be exploited.

• The Memory Tagging Extension is built on top of the top-byte-ignore
feature in ARMv8.0.

4 © 2019 Arm Limited

Memory Tagging Extension Introduction (2/2)

• The MTE extension introduces a set of new
instructions to address various classes
of memory errors.

• The extension is mainly based on the
Lock/Key mechanism.

• It can make easier addressing
errors related to Stack and Heap
allocations.

• To use tagging with heap allocations only
the allocator needs to make use of the
new instructions, the rest of the code only
performs standard LDR/STR.

Area 3

Area 2

Area 1

Area 0

0010b

0001b

0010b

0011b

4 bit tags

1
6

b
yte

s gran
u

le
s

5 © 2019 Arm Limited

Kernel ABI and Top Byte Ignore

• On AArch64 the TCR_EL1.TBI0 bit is set by default.

• When the AArch64 Tagged Address ABI is enabled for a thread, the
following behaviours are guaranteed:
• All syscalls (except prctl(), ioctl(), shmat() and shmdt()) can accept any valid tagged

pointer.
• The syscall behaviour is undefined for invalid tagged pointers: it may result in an

error code being returned, a (fatal) signal being raised, or other modes of failure.
• The syscall behaviour for a valid tagged pointer is the same as for the corresponding

untagged pointer.

• For more details refer to: Documentation/arm64/tagged-address-abi.rst

6 © 2019 Arm Limited

MTE Enabled Kernel Interface

• MTE Kernel interface is built on top of the newly introduced Aarch64
Tagged Address ABI.

• The Memory Tagging Extension is enabled by default by the Kernel.
• The Kernel exposes a new mmap()/mprotect() flag: PROT_MTE.

• The Kernel supports both the exception types: Precise and Imprecise.

• The default mode is controlled via sysctl.

• The user applications can always select Precise mode through prctl().

7 © 2019 Arm Limited

How does it work?

• The userspace allocates memory via
malloc().

• A malloc() call is handled by the
memory allocator, which ultimately
invokes mmap() to reserve memory
for the process.

• If mmap() is invoked with a special
flag, PROT_MTE, the reserved
memory has tagging effects enabled.

• In this case, the allocator tags the
memory and returns to the application
a tagged pointer.

Bionic libc

jemalloc

Linux

US

KS

malloc() free()

8 © 2019 Arm Limited

0

How does it work? (Example)
int main()
{

unsigned long *a;
unsigned long page_sz = getpagesize();

a = mmap(0, page_sz, PROT_READ | PROT_WRITE | PROT_MTE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (a == MAP_FAILED) {
printf("Could not mmap with PROT_MTE");
return -1;

}

a[0] = 1;
a[1] = 2;

a = (unsigned long *)insert_random_tag((void *)a);
set_tag((void *)a);

printf("%p\n", a);
a[0] = 3;
printf("a[0] = %lu a[1] = %lu\n", a[0], a[1]);

a[256] = 0xdead;

return 0;
}

2 | 3

…

0

0

…

0

0x0

0xFFFF

0x0

Tag Size = 4 bits

Granule Size = 16 bytes

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

© 2019 Arm Limited

