Memory management bits in arch/

Mike Rapoport
<rppt@linux.ibm.com>

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 825377
When \texttt{arch/} meets \texttt{mm/}

- TLB management
- Page table manipulations
- Memory models
- Memory detection and initialization
 - Cold and hot (un)plug
Short quiz

\texttt{pgd_offset(mm, address)}
returns a pointer to the entry in the top-level page table
that maps the address.

Linux supports 25 24 architectures.

a) How many definitions of \texttt{pgd_offset} does Linux have?
b) How many does it really need?
Short quiz

A. 31
B. 24
C. 2
D. 1

NO GREP!
Page table manipulation

- Folding is neat, but...
 - Lots of “empty” lines
 - Tree-wide updates for each new level (once in couple of years)
- Possible alternatives:
 - Use page walk
 - Completely new interface, e.g.
    ```c
    vpte_for_each(vpte, start, end, flags)
    ```
- Split and clean `asm/page.h` and `asm/pgtable.h`
 - For instance, like x86...
Memory models

- DISCONTIGMEM is still with us
 - alpha, arc, ia64, m68k

commit d41dee369bff3b9dcb6328d4d822926c
Date: Thu Jun 23 00:07:54 2005 -0700

[PATCH] sparsemem memory model

Sparsemem replaces DISCONTIGMEM when enabled, and it is hoped that it can eventually become a complete replacement
SPAREMEM

- alpha
 - Nobody cares?
- IA-64
 - Nobody cares?
 - Weird dependency of SPAREMEM on DISCONGITMEM
 - Custom VMEMMAP implementation (VIRTUAL_MEM_MAP)
SPARSEMEM

- arc
 - Highmem is below lowmem
 - Less efficient than DISCONTIGMEM?
 - Wasted mem_map

- m68k
 - Unknown memory bank configurations
 - Wasted mem_map
SPARSEMEM

- Decrease section size
 - Increased `mem_section[]` size
 - Decreased `MAX_PHYSMEM_BITS`
- Use `VMEMMAP`
 - More memory overhead
- Cut unused memmap when `HAVE_ARCH_PFN_VALID=y`
 - Requires custom `pfn_valid()`
 - Already exists on m68k
 - May use memblock, like arm/arm64
Memory initialization

- Various amount of cruft to get from firmware memory info to functional buddy allocator
- Several \([\text{start}, \text{end}]\) constructs to represent memory banks
 - Some architectures have more than one
- No consistency in treatment of the reserved areas
 - Is it memory or not?
Vision

- Early reservations and memory detection happen **before** `setup_arch()`
- Memory detection determines NUMA configuration
- Unified representation of (coldplug) memory layout
Memory layout in memblock

- Keep allocator _init only, retain data and accessors
 - Half way there for s390 phymem
- x86: is reserved memory also memory?
- Use ARM’s pfn_valid() for systems with SPARSEMEM and few memory banks
- Extend to memory hotplug?
Challenges

- Hard to get feedback from less active architectures
- Non-trivial changes are scary
- No consideration for neighbours for new arch/code
Thank you!
RFC: reserve and detect memory early

diff --git a/init/main.c b/init/main.c
@@ -595,4 +595,6 @@ asmlinkage void start_kernel(void)
 pr_notice("%s", linux_banner);
+ memory_reserve_early();
+ memory_detect();
+ setup_arch(&command_line);
 mm_init_cpumask(&init_mm);
 setup_command_line(command_line);
RFC: **dissolve** `mem_init()`

```c
diff --git a/init/main.c b/init/main.c
@@ -556,6 +558,7 @@ static void __init mm_init(void)
    page_ext_init_flatmem();
+   memblock_free_all();
+   free_highmem_pages();
    report_meminit();
-   mem_init();
    kmem_cache_init();
    pgtable_init();
@@ -566,4 +569,5 @@ static void __init mm_init(void)
    init_espfix_bsp();
-   pti_init();
+   arch_post_mm_init();
}
```