

Teaching GraalVM Native DWARFish
or is it Dwarvish? whatever!

Andrew Dinn
Distinguished Engineer
Red Hat Java Team

GraalVM Native
● Alternative delivery option for Java apps

– Static (offline) compilation to self-contained binary
● No JVM needed, but retains JDK runtime

– No runtime class loading
● Class loaders throw ClassNotFoundException

– Closed world model
● So all required classes must be presented in advance

● Is it Java?
– Already part of an Oracle released product (GraalVM) so… yes

● (also Red Hat mandrel releases of just GraalVM Native)

– Semantics will be ‘regularized’ (by OpenJDK project)

How does that work?

.class
.class

.class

App Code

.jar
.jar

.jar

SVM Code

.jar
.jar

.jar

.exe

Points To
Analysis

Class, Method
& Field
Substitutions

JDK Code

.jmod

Build/Run
Time Class Init

Optimizing
Compilation

Main Class

.so
.so

libxxx.a

Link Heap
& Methods

libjvm

How Do We Debug It?

.exe

Points To
Analysis

Class, Method
& Field
Substitutions

Build/Run
Time Class Init

Optimizing
Compilation

Link Heap
Methods &
DWARF info

Model Types,
Code and Data

Construct
DWARF info

sources

Current DWARF Model
● Pirate C++ model (so gdb can understand it)
● Java → C++ Method mapping

– Compile Unit groups methods by class
● SUBPROGRAM per method
● owner class, name+sig, range, visibility
● source file + address→line map
● frame size + extend/teardown offsets
● inlined ranges

– detail owner, name+sig, source file + address → line map

– Generated DWARF Sections
● info+abbrev, aranges, frame, line, string

Current gdb support
● break points

– by method name or file+line
– file names resolved via sources cache

● step line by line
– into or over calls
– switches to current method line
– or inline/substituted method line

● stack backtraces
– shows outer compiled methods when in inlined code
– Java ↔ native transitions ‘just works’

● emacs ‘just works’

Planned DWARF Model
● Types

– Requires Java → C++ Type mapping
● class Foo →typedef class _Foo *Foo

– where class _Foo { struct ObjHeader _h; jint f1; Bar f2; … }

● FooBar extends Foo→ class _FooBar: public _Foo
● interface → union { class _Foo *, …}
● array of X→ struct _ArrX { struct ArrHeader _h; X _elem[0] }

● Heap data
– static fields + constants

Planned gdb support
● print object header + contents field by field
● name, type, location (and liveness) for

– parameter vars
– local vars
– static fields

● casts
● traverse object network using path exprs

Thank You
upstream GraalVM:

github.com/oracle/graal

Red Hat GraalVM Native only

https://github.com/graalvm/mandrel

my work in progress:
https://github.com/adinn/graal/tree/debugtypes

demo:
https://youtu.be/JqV-NFWupLA

https://github.com/adinn/graal/tree/debugtypes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

